The Application of Micro-Flow Extrusion Forming Technology in the Denture Preparation

2015 ◽  
Vol 645-646 ◽  
pp. 1351-1356 ◽  
Author(s):  
Jing Zhou ◽  
Guo Lin Duan ◽  
Dong Bin Zhu ◽  
Jin Cai

The forming process of denture preparation based micro-flow extrusion was researched. The dental ceramic materials having health care function was preparation. Through analysis and calculation, the rheological properties of the ceramic slurry confirmed to be pseudo-plastic fluid . The extrusion head as a key part was designed. The pressure distribution and velocity distribution of the internal flow field of extrusion head were simulated by using START-CD software ,the analysis result can used to guide the optimal design of extrusion head.

2013 ◽  
Vol 803 ◽  
pp. 375-378 ◽  
Author(s):  
Qing Qing Lv ◽  
Qi Ming Guan ◽  
Li Quan Yang ◽  
Xi Kui Wang

Aiming at the problems of high performance piston head can not produced by using casting and hot die forging, the warm extrusion molding method is proposed, based on the analysis of factors influencing for forming, rational scheme of orthogonal experiment was designed, a series of analysis for simulation results by using the range analysis method and comprehensive balance method, the optimal forming process parameters combination are identified, the optimal result are verified by the DEFORM software.


2013 ◽  
Vol 706-708 ◽  
pp. 452-455
Author(s):  
Li Quan Yang ◽  
Qing Qing Lv ◽  
Lei Zhao

In order to improve the performance of the piston head on the existing conditions, and the warm extrusion forming technology was put forward based on the internal combustion engine piston head traditional production process. The warm extrusion process scheme and finite element boundary conditions was designed reasonable based on research the piston head forming process, the thermal-mechanical coupling model was established. The numerical simulation of the warm extrusion forming was carried out on the DEFORM software platform. The distributions of warm extrusion forming process strain field, stress field and temperature field were forecasted through the theoretical calculation and simulation. And the production equipment tonnage and die structure form were determined preliminarily. The possible problems of forming process were discussed, and the countermeasures were also put forward, provide the reliable reference for internal combustion engine piston head forming process improvement.


2005 ◽  
Vol 475-479 ◽  
pp. 1325-1328 ◽  
Author(s):  
Jin Long Yang ◽  
Chun Lei Dai ◽  
Yong Huang

Controllable forming technology is one of the key problems for the industrial application of gelcasting. In order to solve this problem, various kinds of influence factors in gelcasting were investigated. Trace ions, ionic strength, pH, dispersant agent, premix, amount of initiator and catalyst, temperature, pressure, materials of container and inhibitor all have influence on solidification process of ceramic slurry. The forming process of gelcasting can be controlled effectively by adjusting these factors.


2013 ◽  
Vol 706-708 ◽  
pp. 444-447
Author(s):  
Qing Qing Lv ◽  
Li Quan Yang ◽  
Xiu Ting Lv ◽  
Lei Zhao ◽  
Xi Kui Wang

In order to obtain high-quality injection head, cold extrusion forming is adopted. Based on the study of forming technology for the injection head, reasonable process flow, cold extrusion pre-treatment process and boundary conditions are designed. Two finite element models in forward extrusion and backward extrusion forming ways are established. Taking DEFORM as the platform, the numerical simulation of forming process is carried out. Through simulation, the distribution of strain field, stress field and velocity field in the process of cold extrusion forming is preliminarily forecast, the merits and defects of two kinds of forming processes and the force state of mold are compared , the optimal forming scheme is determined.


Author(s):  
F Li ◽  
G N Chu ◽  
E L Liu ◽  
R Z Wu ◽  
X L Zhang

To deal with the problems of high energy consumption and low material utilization in low plastic alloy extrusion, a new forming technology – container rotation extrusion – is proposed, and the die structure is also designed. Compared with the die rotation extrusion, which is only suitable for circular section parts, container rotation extrusion can solve the problem of axial ‘cut off’ caused by odd-shaped section product extrusion. The study results show that, in comparison to conventional extrusion, plastic zone expands obviously during forming process and the forming load decreases by 42.1%. What is more, during container rotation extrusion, ‘dead zone’ is disappeared. Consequently, this technology can form both complex cross-section and low plastic material products to achieve ‘small equipment does large workpiece’.


2016 ◽  
Vol 716 ◽  
pp. 502-509 ◽  
Author(s):  
Christoph Seyboldt ◽  
Mathias Liewald ◽  
Daniel Heydt

The following paper deals with the production of Interpenetrating Phase Composites (IPC) using semi-solid forming technology. Therefore, adequate ceramic foams were selected and infiltrated by processing the aluminium alloy A356 in the semi-solid state. In the studies presented in this paper, the infiltrations of two ceramic materials (Al2O3 and SiC) with three different pore sizes (10, 20 and 30 ppi) were investigated. During the forming process the liquid phase fraction of the aluminium was varied to analyze infiltration effects in relation to the raw material´s liquid phase fraction. Afterwards, microsections of the produced specimens were analyzed in order to characterize their microstructure and the quality of infiltration. The results showed that completely filled composite components with good mechanical properties can be produced by infiltrating ceramic preforms with a semi-solid aluminium alloy.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (8) ◽  
Author(s):  
JANI LEHMONEN ◽  
TIMO RANTANEN ◽  
KARITA KINNUNEN-RAUDASKOSKI

The need for production cost savings and changes in the global paper and board industry during recent years have been constants. Changes in the global paper and board industry during past years have increased the need for more cost-efficient processes and production technologies. It is known that in paper and board production, foam typically leads to problems in the process rather than improvements in production efficiency. Foam forming technology, where foam is used as a carrier phase and a flowing medium, exploits the properties of dispersive foam. In this study, the possibility of applying foam forming technology to paper applications was investigated using a pilot scale paper forming environment modified for foam forming from conventional water forming. According to the results, the shape of jet-to-wire ratios was the same in both forming methods, but in the case of foam forming, the achieved scale of jet-to-wire ratio and MD/CD-ratio were wider and not behaving sensitively to shear changes in the forming section as a water forming process would. This kind of behavior would be beneficial when upscaling foam technology to the production scale. The dryness results after the forming section indicated the improvement in dewatering, especially when foam density was at the lowest level (i.e., air content was at the highest level). In addition, the dryness results after the pressing section indicated a faster increase in the dryness level as a function of foam density, with all density levels compared to the corresponding water formed sheets. According to the study, the bonding level of water- and foam-laid structures were at the same level when the highest wet pressing value was applied. The results of the study show that the strength loss often associated with foam forming can be compensated for successfully through wet pressing.


2020 ◽  
Vol 110 (11-12) ◽  
pp. 838-843
Author(s):  
Philipp Müller ◽  
Bernd-Arno Behrens ◽  
Sven Hübner ◽  
Hendrik Vogt ◽  
Daniel Rosenbusch ◽  
...  

Techniken zur Steigerung der Formgebungsgrenzen in der Umformtechnik sind von hoher wirtschaftlicher Bedeutung. In dieser Arbeit wird eine Schwingungsüberlagerung im Krafthauptfluss eines Axialformprozesses zur Ausprägung einer Verzahnungsgeometrie untersucht. Die Auswirkungen der Schwingung auf die erzielbare Ausfüllung der Zahnkavitäten werden analysiert sowie die Parameter Schmierung und Oberflächengüte der Halbzeuge in ihrer kombinierten Wirkung untersucht. Es konnte eine Reduzierung der mittleren Umformkraft sowie eine Erhöhung der Formfüllung festgestellt werden. Techniques for extending the production limits in forming technology are of great economic importance. In this research, a superimposed oscillation in the main force flow of an axial forming process to form an axial gear geometry is investigated. The effects of the superimposed oscillation on the achievable form-filling of the tooth cavities are analyzed and the parameters lubrication and surface quality of the semi-finished products are investigated in their combined effect. A reduction of the averaged forming force as well as an increase of the form-filling could be achieved.


2013 ◽  
Vol 788 ◽  
pp. 57-60
Author(s):  
Chun Cao ◽  
Chun Dong Zhu ◽  
Chen Fu

Warm pressing forming technology has been gradually applied to the forming of automotive friction materials. How to ensure product performance to achieve the target at the same time achieve the maximum energy saving is the research focus of this study. In this paper, by using finite element method, the field of automotive friction materials in warm pressing forming was analyzed, reveals the relationship between the temperature field and the heating temperature/heating time. Furthermore, the energy consumption was analyzed and compared it with hot pressing forming process. The results will have significant guiding to the process optimization in warm pressing forming.


2012 ◽  
Vol 560-561 ◽  
pp. 846-852 ◽  
Author(s):  
Qi Ma ◽  
Lin Hua ◽  
Dong Sheng Qian

Ring parts with small-hole and deep groove such as duplicate gear and double-side flange, are widely used in various engineering machineries. Three-roll cross rolling (TRCR) is a new advanced plastic forming technology for the processing of rings with small-hole and deep groove. In this paper, a 3D coupled thermo-mechanical FE model for TRCR of ring with small-hole and deep groove is established under ABAQUS software environment. By simulation and analysis, the evolution and distribution laws of strain and temperature in the forming process are revealed, and the effects of the key process parameters on the deformation uniformity are explored. The results provide valuable guideline for the technological parameter design and optimization.


Sign in / Sign up

Export Citation Format

Share Document