Influence of Adopted Heat Treatments on Properties of Tri-Layer Composite AA2519 – AA1050 – Ti GR.5 Made by Explosive Cladding Method

2016 ◽  
Vol 687 ◽  
pp. 71-78
Author(s):  
Michał Najwer ◽  
Grzegorz Kwiatkowski

The article shows the results of research on tri-layer composite AA2519-AA1050-Ti Gr. 5 made by explosive cladding method. Performed bond was heat treated in different conditions. Four specimens were heated in 530°C in 30 minutes, and after adopted different ways of cooling for each specimen. Used cooling in air and water. Additionally two specimens were aged at 150°C for 600 minutes. Last joint was heated at 420°C for 60 minutes and after was cooled in still air. For obtained joint were performed mechanical and technological tests. Tests included tensile strength test, yield strength test, ram strength test and bend test. Moreover performed structural tests, analysis of the chemical composition and hardness measurements. Based on the results evaluated the quality of joint, and described the influence of heat treatment on the properties of obtained multilayer material. Was found that as a result of explosive cladding, hardness in the interface increased. Heat treatments at temperature 530°C do not change properties. Only the heat treatment at temperature 420°C is decreasing hardness in the interface and in the whole cross section of the AA2519 layer.

HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 642a-642
Author(s):  
R.E. McDonald ◽  
T.G. McCollum ◽  
E.A. Baldwin

Mature green `Sunbeam' tomato fruit (Lycopersicon esculentum Mill.), were treated in varying order with C2H4, 42°C water for 60 minutes, 38°C air for 48 hours, partial ripening for 48 hours at 20°C, or not treated, and then stored at 2°C for 14 days before ripening at 20°C. Heat treated fruit stored at 2°C and transferred to 20°C ripened normally while 63% of nonheated fruit decayed before reaching red ripe. More chilling injury (CI) developed when C2H4 was applied following heat treatment rather than before. There was more CI in fruit that were 42°C water treated compared with the 38°C air treatment. Less CI developed on fruit that were partially ripened for 2 days at 20°C before a 42°C water treatment rather than following it. At red ripe, nonchilled fruit were firmer than chilled heat treated fruit. Fruit treated in 42°C water were firmer when the heat treatment was applied before the C2H4 treatment rather than following it. Chlorophyll and lycopene content and internal quality characteristics of fruit were similar at the red ripe stage irrespective of C2H4 or heat treatment. Chilling and heat treatments reduced some of the 15 flavor volatiles analyzed. Volatile levels were lower in fruit treated with C2H4 before heat treatment compared with fruit treated with C2H4 following heat treatment. Prestorage heat treatments could allow for storage of mature green tomatoes at low temperatures with little loss in their ability to ripen normally.


2021 ◽  
Author(s):  
Giuseppe Del Guercio ◽  
Manuela Galati ◽  
Abdollah Saboori

Abstract Additive Manufacturing processes are considered advanced manufacturing methods. It would be possible to produce complex shape components from a Computer-Aided Design model in a layer-by-layer manner. Lattice structures as one of the complex geometries could attract lots of attention for both medical and industrial applications. In these structures, besides cell size and cell type, the microstructure of lattice structures can play a key role in these structures' mechanical performance. On the other hand, heat treatment has a significant influence on the mechanical properties of the material. Therefore, in this work, the effect of the heat treatments on the microstructure and mechanical behaviour of Ti-6Al-4V lattice structures manufactured by EBM was analyzed. The main mechanical properties were compared with the Ashby and Gibson model. It is very interesting to notice that a more homogeneous failure mode was found for the heat-treated samples. The structures' relative density was the main factor influencing their mechanical performance of the heat-treated samples. It is also found that the heat treatments were able to preserve the stiffness and the compressive strength of the lattice structures. Besides, an increment of both the elongation at failure and the absorbed energy was obtained after the heat treatments. Microstructure analysis of the heat-treated samples confirms the increment of ductility of the heat-treated samples with respect to the as-built one.


2016 ◽  
Vol 704 ◽  
pp. 225-234 ◽  
Author(s):  
Peter Franz ◽  
Aamir Mukhtar ◽  
Warwick Downing ◽  
Graeme Smith ◽  
Ben Jackson

Gas atomized Ti-6Al-4V (Ti64) alloy powder was used to prepare distinct designed geometries with different properties by selective laser melting (SLM). Several heat treatments were investigated to find suitable processing parameters to strengthen (specially to harden) these parts for different applications. The results showed significant differences between tabulated results for heat treated billet Ti64 and SLM produced Ti64 parts, while certain mechanical properties of SLM Ti64 parts could be improved by different heat treatments using different processing parameters. Most heat treatments performed followed the trends of a reduction in tensile strength while improving ductility compared with untreated SLM Ti64 parts.Gas nitriding [GN] (diffusion-based thermo-chemical treatment) has been combined with a selected heat treatment for interstitial hardening. Heat treatment was performed below β-transus temperature using minimum flow of nitrogen gas with a controlled low pressure. The surface of the SLM produced Ti64 parts after gas nitriding showed TiN and Ti2N phases (“compound layer”, XRD analysis) and α (N) – Ti diffusion zones as well as high values of micro-hardness as compared to untreated SLM produced Ti64 parts. The microhardness profiles on cross section of the gas nitrided SLM produced samples gave information about the i) microhardness behaviour of the material, and ii) thickness of the nitrided layer, which was investigated using energy dispersive spectroscopy (EDS) and x-ray elemental analysis. Tensile properties of the gas nitrided Ti64 bars produced by SLM under different conditions were also reported.


1937 ◽  
Vol 15c (5) ◽  
pp. 217-229 ◽  
Author(s):  
F. H. Peto

Heat treatments were applied to barley seeds and 10 different mutant characters were observed in the progeny, viz.; xantha1 and 2, dwarf1,2,3 and 4, virescent1 and 2, chlorina and albino. Typical Mendelian ratios were not obtained in the first segregating generation owing to the small size of the sector affected in the generation of treatment. In the second and third segregating generations, good fits were obtained in all cases to either monohybrid or dihybrid ratios. Both 3:1 and 15:1 ratios were observed in lines segregating for xantha1 and albino characters. The postulation of the duplicate factor hypothesis was necessary to explain this situation. Chlorina and dwarf mutants segregated in all the cases investigated as simple Mendelian recessives. One virescent strain was believed to have arisen through plastid mutation and was maternally inherited.The heat treatment significantly increased the natural mutation rate for the xantha characters but apparently had no effect on the albino mutation rate. Dwarf, virescent and chlorina mutants were observed in the segregating generation after heat treatment, but were not detected in untreated populations.


1982 ◽  
Vol 45 (6) ◽  
pp. 513-515 ◽  
Author(s):  
G. F. SENYK ◽  
R. R. ZALL ◽  
W. F. SHIPE

Raw milk was heat-treated under subpasteurization and suprapasteurization conditions, cooled and stored for up to 72 h at 4.4 and 6.7°C. Milk lipase activity and bacteria counts were monitored in both unheated and heated milks. Inhibition of milk lipase activity ranged from 42 to 98% for treatments of 57.2°C for 10 sec to 73.9°C for 10 sec, respectively. The logs of Standard Plate Count after 72 h of storage at 6.7°C were 6.56, 4.86, 4.31, 4.00 and 2.82 for unheated and 10-sec heat treatments at 57.2, 65.6, 73.9 and 82.2°C, respectively. Psychrotrophic Bacteria Counts were also lower in the heated milks than in the unheated milk. The logs of Psychrotrophic Bacteria Counts after 72 h of storage at 6.7°C were 6.21, 2.45, 2.27, 1.33 and 1.00 for unheated and 10-sec heat treatments at 57.2, 65.6, 73.9 and 82.2°C, respectively. Heat treatment of raw milk supplies would result in limiting action of the milk lipase system and growth of bacteria.


2021 ◽  
pp. 307-325
Author(s):  
Jon L. Dossett

Abstract This article introduces some of the general sources of heat treating problems with particular emphasis on problems caused by the actual heat treating process and the significant thermal and transformation stresses within a heat treated part. It addresses the design and material factors that cause a part to fail during heat treatment. The article discusses the problems associated with heating and furnaces, quenching media, quenching stresses, hardenability, tempering, carburizing, carbonitriding, and nitriding as well as potential stainless steel problems and problems associated with nonferrous heat treatments. The processes involved in cold working of certain ferrous and nonferrous alloys are also covered.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 581
Author(s):  
Ioan Milosan ◽  
Monica Florescu ◽  
Daniel Cristea ◽  
Ionelia Voiculescu ◽  
Mihai Alin Pop ◽  
...  

The appropriate selection of implant materials is very important for the long-term success of the implants. A modified composition of AISI 316 stainless steel was treated using solar energy in a vertical axis solar furnace and it was subjected to a hyper-hardening treatment at a 1050 °C austenitizing temperature with a rapid cooling in cold water followed by three variants of tempering (150, 250, and 350 °C). After the heat treatment, the samples were analyzed in terms of hardness, microstructure (performed by scanning electron microscopy), and corrosion resistance. The electrochemical measurements were performed by potentiodynamic and electrochemical impedance spectroscopy in liquids that simulate biological fluids (NaCl 0.9% and Ringer’s solution). Different corrosion behaviors according to the heat treatment type have been observed and a passivation layer has formed on some of the heat-treated samples. The samples, heat-treated by immersion quenching, exhibit a significantly improved pitting corrosion resistance. The subsequent heat treatments, like tempering at 350 °C after quenching, also promote low corrosion rates. The heat treatments performed using solar energy applied on stainless steel can lead to good corrosion behavior and can be recommended as unconventional thermal processing of biocompatible materials.


Author(s):  
Michael F. P. Bifano ◽  
Pankaj B. Kaul ◽  
Vikas Prakash

Thermal conductivity measurements of commercially available CVD grown individual multiwalled carbon nanotubes (MWCNTs) are reported. The measurements are performed using the three-omega-based Wollaston T-Type probe method inside a scanning electron microscope (SEM). An average 385% increase in thermal conductivity is measured for those MWCNTs samples which undergo a 20 hour 3000°C post annealing heat treatment. However, in most samples qualitatively characterized defects are found to negate any advantage of the heat treatment process. The highest thermal conductivity measured is 893.0 W/mK and is of a heat-treated sample. These results will help to improve the quality of MWCNT production and aid in the development of highly efficient CNT-structured thermal management devices and engineering materials.


2016 ◽  
Vol 867 ◽  
pp. 19-23 ◽  
Author(s):  
Itsaree Iewkitthayakorn ◽  
Somjai Janudom ◽  
Narissara Mahathaninwong

This research focused on the effect of solution heat treated microstructures on anodic oxide formations of casting 7075 Al alloy. The casting specimens were solution heat treated at 450°C for various holding. The results showed that the quality of anodic oxide film on the specimen with 4h solution heat treatment time was higher than that of at other conditions. Because its microstructures obtained the lowest amounts of secondary phase particles leading to improve the quality of oxide film and also reduce defects in oxide film. On the other hand, coarse black particles of Mg2Si formed increasingly in microstructures of specimens after solution treatment at prolong holding time of 8h and 16h resulted in discontinues oxide films forming on them.


1994 ◽  
Vol 119 (1) ◽  
pp. 49-53 ◽  
Author(s):  
William S. Conway ◽  
Carl E. Sams ◽  
Chien Yi Wang ◽  
Judith A. Abbott

`Golden Delicious' apples (Malus domestics Borkh.) were treated with heat or CaCl2 solutions or a combination thereof to determine the effects of these treatments on decay and quality of fruit in storage. Heat treatment at 38C for 4 days, pressure infiltration with 2% or 4% solutions of CaCl2, or a combination of both, with heat following CaCl2 treatment affected decay and firmness during 6 months of storage at 0C. The heat treatment alone reduced decay caused by Botrytis cinerea (Pers.:Fr.) by ≈30%, while heat in combination with a 2% CaC12 solution reduced decay by ≈60 %. Calcium chloride solutions of 2% or 4% alone reduced decay by 40 % and 60 %, respectively. Heat treatments, either alone or in combination with CaC12 treatments, maintained firmness (80 N) best, followed by fruit infiltrated with 2% or 4% solutions of CaCl2 alone (70 N) and the nontreated controls (66 N). Instron Magness-Taylor and Instron compression test curves show that heat-treated fruit differed qualitatively and quantitatively from nonheated fruit. Heat treatment did not increase the amount of infiltrated Ca bound to the cell wall significantly, and a combination of heat treatment after CaCl2 infiltration increased surface injury over those fruit heated or infiltrated with CaCl2 solutions alone.


Sign in / Sign up

Export Citation Format

Share Document