A Comparative Study on Thermal Insulation Properties of Partial Replacement of Fine Aggregate by E-Waste Material (FR-4) in M30Grade with Conventional Concrete

2016 ◽  
Vol 692 ◽  
pp. 104-109
Author(s):  
A.A. Dhanraj ◽  
C. Selvamony

The purpose of this experiment is to analyze the steady state condition in a concrete slab. Temperature measurements were made for each scenario and were used along with physical dimensions to compute various heat transfer parameters. In this paper, the investigation was made by the partial replacement in the coarse aggregate with E-waste (PCB cutting waste) (FR-4) in the conventional concrete. The durability test such as compressive strength test, split tensile and flexure strength were made and the results analyzed. The investigation is made by casting slab panels of various thickness (1’ x 1’ x 0’-2”, 1’ x 1’ x 0’-4”, 1’ x 1’ x 0’-6”, 1’ x 1’ x 0’-8” & 1’ x 1’ x 0’-10”) with same area and different temperature. These panels were allowed for curing of 28 days and tested in a closed chamber. The heat was transferred from one part of chamber to another chamber through the slab element. Then the heat transformation and U-factor will be calculated and the insulation properties of the e-waste concrete with conventional concrete

Author(s):  
M. Preethi ◽  
Md. Hamraj ◽  
Ashveen Kumar

The present study focuses on the preparation of M30 grade concrete by replacing fine aggregate with 0%,5%,10%,15%,20%,25% of vermiculite and cement with 0% and 10% of constant silica fume to improve the performance of concrete. Via experimentation, the impact of acid exposure on concrete strength and weight is investigated in the current report. Concrete cubes of different mixes(12no.’s) are casted and exposed to Sulphuric acid of (pH=3). Cubes with dimensions of 100mm x 100mm x 100mm are cast with M30 concrete and then immersed (cured) in water for 28 days. The cubes are then soaked in 4 percent concentrated Sulphuric acid for 7 days. The compressive strength of the cured cubes is then measured using a compressive measuring machine.


This paper presents an experimental investigation on the properties of concrete in which like cement is partially replacing by used nano silica and is partially replacing by used waste foundry sand. Because now a day the world wide consumption of sand as cement and as fine aggregate in concrete production is very high. Nano silica and waste foundry sand are major by product of casting industry and create land pollution. The cement will be replaced with nano silica and the river sand will be replaced with waste foundry sand (0%, 5%, 10%, 15%, 20%). This experimental investigation was done and found out that with the increase in the nano silica and waste foundry sand ratio. Compression test has been done to find out the compressive strength of concrete at the age of 7, 14, 21, and 28. Test result indicates in increasing compressive strength of plain concrete by inclusion of nano silica as a partial replacement of cement and waste foundry sand as a partial replacement of fine aggregate.


2019 ◽  
Vol 11 (17) ◽  
pp. 4647 ◽  
Author(s):  
Warati ◽  
Darwish ◽  
Feyessa ◽  
Ghebrab

The increase in the demand for concrete production for the development of infrastructures in developing countries like Ethiopia leads to the depletion of virgin aggregates and high cement demand, which imposes negative environmental impacts. In sustainable development, there is a need for construction materials to focus on the economy, efficient energy utilization, and environmental protections. One of the strategies in green concrete production is the use of locally available construction materials. Scoria is widely available around the central towns of Ethiopia, especially around the rift valley regions where huge construction activities are taking place. The aim of this paper is therefore to analyze the suitability of scoria as a fine aggregate for concrete production and its effect on the properties of concrete. A differing ratio of scoria was considered as a partial replacement of fine aggregate with river sand after analyzing its engineering properties, and its effect on the mechanical properties of concrete were examined. The test results on the engineering properties of scoria revealed that the material is suitable to be used as a fine aggregate in concrete production. The replacement of scoria with river sand also enhanced the mechanical strength of the concrete. Generally, the findings of the experimental study showed that scoria could replace river sand by up to 50% for conventional concrete production.


2019 ◽  
Vol 8 (3) ◽  
pp. 1982-1988

Use of agro and industrial wastes in concrete production will cause sustainable concrete era and greener habitat. In this study an endeavor has been made to discover the propriety of Sugarcane Bagasse Ash (SCBA) and Granite Waste (GW) as partial replacement for traditional river sand. The percentage substitute is calculated based on the particle packing approach. The properties such as compressive, splitting tensile, flexural strengths and modulus of elasticity, water absorption, sorptivity and rapid chloride penetration test of the concrete with bagasse ash and granite waste as a partial replacement for river sand and to evaluate them with those of conventional concrete made with river sand fine aggregate are investigated. The test results show that the strength aspects of bagasse ash-granite waste concrete are higher than those of the conventional concrete. Moreover, they suggest that the bagasse ash-granite waste concrete has higher strength characteristics and remains in the lower permeability level shows improvement in overall durability of concrete than the conventional concrete.


Author(s):  
L Opirina ◽  
Azwanda Azwanda ◽  
R Febrianto

Concrete is the result of a mixture of cement, aggregate and water. Under certain conditions, the concrete mixture can be added with additives and admixture to get the concrete as needed. Cement is the most important material in the manufacture of conventional concrete. When cement is produced, the same amount of CO2 will also be generated as a side effect and pollute the atmosphere. Fly ash as an alternative to cement will be introduced as an alternative concrete material to reduce the use of cement in the concrete mix. In addition to the use of charcoal fly ash as a partial substitute for cement, this study also uses palm oil clinkers as a substitute for fine aggregate as much as 20%. This replacement material is an industrial waste which has the main content of silica and alumina which is similar to the main material for forming concrete. In addition, the use of these two materials also aims to reduce the exploration of the use of natural materials. This research introduces 3 kinds of concrete composition. The grouping is based on the ratio of fly ash and cement used, namely (60%:40%), (70%:30%) and (80%:20%). The test object used is a concrete cylinder with a diameter of 150 mm and a height of 300 mm. Tests were carried out at the age of 28 days of concrete. The compressive strength test showed that the best concrete was produced from the combination of the addition of 60% fly ash of coal aged 28 days, which was 4.21 MPa.


In recent days, there is an intense need for an alternate cost effective and sustainable raw material for concrete which does not make the structure inferior in strength. An experimental study on the utilization of the waste plastic and M-sand in the place of river sand and aggregate partially was performed in paper. In the scenario of scarcity of river sand due to the territorial government action and restriction of usage because of the eco and environmental consideration, M-Sand is found to be an effective replacement and cost effective material. Concrete specimens were casted with combination of M-sand and plastic waste with 5%, 10%, 15%, 20% and 25% and compared against control mix. Cube test for compressive strength study, cylinder test for split tensile strength study and prism test for flexural strength study were done with the proposed concert mixture. All the specimens and tests were done for different curing period of 7, 14 and 28 days. The results obtained from the proposed mix of concrete are compared with the conventional concrete mix specimen respectively. The replacement of fine aggregates reduces the quantity of river sand to be used in concrete and also plastic fibres are proved to be more economical. Positive performance of the concrete with waste plastic and M-Sand as partial replacement of river sand was observed on all the experiments and found optimal in sustainable and economical performance.


Concrete is a material which widely used in construction industry. The present investigation deals with the study of partial replacement of fine aggregate by Nylon Glass Granules in concrete. The fine aggregates are replaced by 0%, 10%, 20% and 30% by Nylon Glass Granules by volume of natural sand in M35 grade of concrete. Additionally, to increase the tensile strength of concrete 1% of Steel Fiber by volume of cement were added to all the mixes containing Nylon Glass Granules. The concrete produced by such ingredients were cured for 7 and 28 days to evaluate its hardened properties. The 28days hardened properties of concrete revealed that maximum strength is observed for the mix which possesses 20% replacement of fine aggregate by Nylon Glass Granules compared with the conventional concrete, thus it is said to be the optimum mix


Author(s):  
Mohammed Sohel Ahmed

Abstract: As the demand for the structural members application in the concrete industry is continuously increasing simultaneously many a times it is required to lower the density of concrete enabling light weight which helps in easy handling of the concrete and its members. In this research an experimental endeavour has been made to equate conventional concrete with light weight by partially substituting the coarse aggregate with the pumice stone aggregate in M30 grade mix design. Simultaneously small fibres of Recron3's Polypropylene have been applied to the concrete as a reinforcing medium to minimize shrinkage cracking and improve tensile properties. The coarse aggregate was substituted by the pumice aggregate in 10, 20, 30, 40, and 50 percent and fibres respectively in 0.5, 1, 1.5, 2 and 2.5 percent. The experiment is focused on strength parameters to determine the most favourable optimum percent with respect to conventional concrete. Keywords: OPC (Ordinary Portland Cement)1, FA (Fine Aggregate)2, CA (Coarse Aggregate) 3, fck (Characteristic Compressive Strength at 28days)4, Sp. Gr (Specific Gravity)5, WC (Water Content)6, W/C (Water Cement Ratio)7, S (Standard Deviation)8, Fck (Target Average Compressive Strength at 28days)9.


A self-compacting concrete (s.c.c) is a special concrete which settles itself without any vibration due to its own mass and self-weight. This will happen due to use of special admixtures which have tendency to increase the flow of concrete by reducing the viscosity nature. This particular type of concrete was developed by the japan researchers in 1988. Later it was modifies and developed in many parameter’s by UK and U.S.A researchers. This particular thesis is about the improvement of performance of the S.C.C by replacing the fines and cement of the aggregates by the waste products that obtained from the different industries. The fines are replaced partially by crushed sand obtained as quarry waste and the aluminium slag that obtained from many industries as a waste product is partially introduced as binding material By using this S.C.C the problems that are facing by the construction industries during the placement of the concrete will solve. Now days the structures are designed and made as heavy reinforced structures where the sizes of structural elements are restricted due to architectural and some structural considerations. So the concrete that poured in those elements shows the voids and honey combing it can be prevented by using this S.C.C. not only the improvement of the strength but also the construction time and cost also gets reduced by using this product, because with this material no need of vibration. It reduces the time of construction and cost regarding vibration equipment and labor. But the main problem while preparing s.c.c is to select the proper admixture to prevent the cracking and shrinkage issues. This type of concrete requires 20-25 percent higher matric paste when compared to conventional concrete. This thesis works on mainly preparing the most feasible mix for s.c.c with the partial replacement of fines and cement by above mentioned materials which makes the matrix still in plastic state without altering the original properties of the concrete. The second task is to prepare the specimens for different strength tests and like compression and tensile and bending parameters check along with the considering the shrinkage issues.


The concrete is the material that is obtained from concrete forming materials. These raw materials are mixed in particular proportions, these proportions are based on different concrete grades. These concrete grades defines the strength of the concrete. Construction of structures are based upon concrete, the construction process is growing day by day at a huge scale, hence there is more demand for the raw materials. In order to maintain the demand, excessive extractions of raw materials are done, which makes environment more harmful. In order to limit the extraction of natural raw materials that are used for producing concrete mix, alternative supplementary materials are replaced with fine aggregates. This study involves using of alternative supplementary materials as partial replacement of fine aggregate by copper slag and rock dust, copper slag and rock dust are used at various proportions. The various proportions of rock dust and copper slag are 0% to 50% replacement at an increment of 5% interval. Polypropylene fiber is the material that is added as supplementary material to the concrete mix, it is added at constant volume of 1.5% volume of concrete, it is mixed in concrete to improve toughness and reduce shrinkage of concrete. Super plasticizer admixture that is used is Conplast SP430DIS which contains sulphonated naphthalene formaldehyde is added to cement based on site trails which increases the early concrete strength. Combining copper slag, rock dust, polypropylene fiber and super plasticizer admixture in modified concrete gave best results when compared to conventional concrete due to content of silica in copper slag. Hence this combination can be used for further investigation


Sign in / Sign up

Export Citation Format

Share Document