Research on the Effects of Tapping Performances with Multiple-Type Parameters

2016 ◽  
Vol 693 ◽  
pp. 1114-1120 ◽  
Author(s):  
Fei Peng ◽  
Xian Guo Yan ◽  
Hong Guo ◽  
Li Juan Lu ◽  
Shao Hua Zhang ◽  
...  

Ti-6Al-4V alloy has been tapped with the HSS/Co-M35 by the orthogonal test method. The empirical relationship between the cutting force and four type parameters are given. Also, factors such as hook angle, relief angle, passivation edge radius and main spindle speed collected from the AdvantEdge FEM software are examined by using both statistical analysis and regression analysis. The impact of tapping performance under the multiple type parameters of tap which contain hook angle, relief angle, passivation edge radius and main spindle speed are studied by extreme difference analysis. Three tapping performance indexes which are maximum torque, axial cutting force and cutting temperature have been converted into a single composite indicator yi* by using the comprehensive evaluation method. The optimal process parameters in test are that rake of tap is 11°, relief angle is 12°, and passivation edge radius is 0.015mm, while main spindle speed is 250r/min.

2021 ◽  
Vol 30 ◽  
pp. 2633366X2098530
Author(s):  
Shiyang Yu ◽  
Shijun Ji ◽  
Ji Zhao ◽  
Chao Zhang ◽  
Handa Dai

The main factors affecting the displacement of micro-motion platform during the grinding process are spindle speed, cutting force, and piezoelectric ceramic input voltage model. This article, using the orthogonal test method, found a set of machining parameters which lead to less displacement deviation between practical test and theoretic analysis. First of all, single-factor experiments were carried out to study how spindle speed, cutting force, and piezoelectric ceramic input voltage model affect the experimental results, and then the orthogonal test was conducted. The experimental datum shows that voltage model was the most influential factor, followed by spindle speed and cutting force. The optimum combination of grinding parameters was obtained as spindle speed of 800 r/min, cutting force of 18 N, and voltage model radius of 12 µm. At this time, the average unit error of displacement of micro-motion platform was 9.13%.


2020 ◽  
Vol 866 ◽  
pp. 3-11
Author(s):  
J. Yin ◽  
W. Yang ◽  
Yong Guo Wang

Cutting force and cutting temperature are two important parameters in the cutting processes. In this paper, AdvantEdge finite element analysis software was used to simulate and analyze the reaming process of aviation aluminum alloy 7050 by using PCD reamer. The cutting simulation model was established to investigate the effect of spindle speed, feed per tooth on thrust force and cutting temperature. Simulation results showed that the cutting force increased with the increase of feed per tooth at different spindle speeds. And in the case of different feed per tooth, the cutting force decreased slightly as the spindle speed increase. Besides, from the cutting temperature distributed in the reamer, the cutting temperature near the tip of the tool in the reaming process was highest, the cutting temperature increased with the increase of both spindle speed and feed per tooth.


2020 ◽  
pp. 55-60
Author(s):  
YU.V. Dimov ◽  
D.B. Podashev

The thermal processes that occur during processing with elastic abrasive wheels (EAW) are analyzed. The calculation of heat from the impact of a single abrasive grain and the temperature of the billet during processing, which should be lower than the melting temperature of the EAW polymer binder, is proposed. The adequacy of the mathematical model is confirmed by experiments. Keywords: ELASTIC ABRASIVE WHEEL, MICRORELIEF, CUTTING FORCE, TEMPERATURE, PROCESSING MODE. [email protected]


2014 ◽  
Vol 532 ◽  
pp. 540-544
Author(s):  
Jian Chen ◽  
Hong Mo Shang ◽  
Liang Tian ◽  
Gui Cheng Wang

The gear is widely used in manufacturing industry. The object of study is straight spur gear. According to the feature of involute gear, a three-edged indexable milling insert is designed. Firstly, the milling model is built in Deform3D. Then, the optimal relief angle is gained based on the cutting temperature and the optimal relief angle is 6°. The cutting parameters are researched and the optimal parameters are obtained according to the cutting force.


2019 ◽  
Vol 23 (5 Part A) ◽  
pp. 2577-2584
Author(s):  
Hui Zhang ◽  
Changsheng Guo ◽  
Changming Zhang

Aiming at 300M hard-to-machine material, the effects of different drilling parameters (spindle speed, n, feed, f, bit diameter, d) on drilling temperature, torque and axial force were analyzed and studied by orthogonal test method. The prediction models of drilling temperature, torque, and drilling axial force are constructed. The results show that the cutting temperature and stress are mainly distributed on the cross edge of the bit in the initial stage of 300 m steel drilling. With the continuous drilling process of 300M hard-to-machine materials, the cutting temperature and stress generated gradually transfer to the main cutting edge of the bit and extend along the main cutting edge. With the increase of bit diameter, the cutting axial force, torque and cutting temperature decrease, but the cutting axial force, torque and cutting temperature decrease. With the increase of spindle speed and feed, the cutting temperature is increasing. According to the results of orthogonal experiment, the cutting axial force is established by least square method. The predictive models of force, torque, and cutting temperature are validated by the experimental model coefficients and model coefficients. The results show that feed, f, has the greatest influence on cutting axial force, torque, and cutting temperature.


2011 ◽  
Vol 188 ◽  
pp. 590-595
Author(s):  
B.J. Xiao ◽  
Cheng Yong Wang ◽  
Ying Ning Hu ◽  
Yue Xian Song

A two-dimensional orthogonal thermal-mechanical finite element model by Deform2D finite element analysis software is established in the article. By the adaptive meshing technique, not only cutting process but also the effect on the process of aluminum alloy Al6061-T6 processing as friction coefficient changing is simulated. The simulation shows that the friction coefficient has significant effect on the cutting temperature and cutting force, and the effect is nonlinear. With the increasing of the friction coefficient, the cutting temperature and cutting force will both increase. The impact the friction coefficient has on the surface residual stress is much smaller than the impact on the cutting temperature and cutting force.


2016 ◽  
Vol 1136 ◽  
pp. 233-238
Author(s):  
Liang Wen ◽  
Zi Han Zhao ◽  
Jin Bang Song ◽  
De Dong Yu ◽  
Ming Chen ◽  
...  

Cutting force and temperature are the two chief factors affecting bone rehabilitation during bone cutting in many orthopedic surgeries. To reveal new knowledge of thermal and force when milling cortical bone, slotting experiments were carried on high-speed milling platform. Cutting force and temperature were measured during the milling process. The effects of cutting inputs on cutting thermal and force were researched in detail. The results showed that: feed rate and spindle speed had a great impact on the milling temperature, while the milling force was mainly influenced by spindle speed. A feed rate of 1.0-1.4 mm/s is recommended to obtain preferable milling force and temperature, and a larger feed rate of 1.2-1.4 mm/s is advised to use with a lower spindle speed (8000-20000 r/min), while a smaller feed rate of 1.0-1.2 mm/s should be chosen when spindle speed was between 20000-40000 r/min. Feeding parallel to the growth direction of the cortical bone can significantly reduce the milling temperature, but there was no obvious change in milling force. The lowest cutting temperature obtained during the experiment was around 50 °C without coolant, which was acceptable for orthopedic surgeries.


2022 ◽  
Vol 1048 ◽  
pp. 291-297
Author(s):  
George Pramod ◽  
D. Philip Selvaraj ◽  
George Pradeep

A CNC dry milling experiment was conducted for the machining parameter optimization of two grades of Martensitic Stainless steel (MSS). Optimization is done by employing Taguchi method (S/N ratio and ANOVA). The specimens used are MSS grades 410 and 420.The experiments were designed by employing L9 orthogonal array for 3 levels of feed and spindle speeds. The impact of these parameters on cutting force was analyzed. The analysis reveals that spindle speed constitute the maximum impact on cutting force for both MSS grades. Optimum cutting parameters are obtained at 30 mm/min (feed rate) and 1500 rpm (spindle speed). Due to higher Chromium and Carbon content in AISI 420 MSS resulted higher cutting force values compared with AISI 410 MSS. Optimum values of cutting parameters are estimated for improving productivity and quality. The predicted values at optimal conditions are estimated. The results indicate a good conformity with the outcome of experiment.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110090
Author(s):  
Xuefeng Zhao ◽  
Hao Qin ◽  
Zhiguo Feng

Tool edge preparation can improve the tool life, as well as cutting performance and machined surface quality, meeting the requirements of high-speed and high-efficiency cutting. In general, prepared tool edges could be divided into symmetric or asymmetric edges. In the present study, the cemented carbide tools were initially edge prepared through drag finishing. The simulation model of the carbide cemented tool milling steel was established through Deform software. Effects of edge form factor, spindle speed, feed per tooth, axial, and radial cutting depth on the cutting force, the tool wear, the cutting temperature, and the surface quality were investigated through the orthogonal cutting simulation. The simulated cutting force results were compared to the results obtained from the orthogonal milling experiment through the dynamometer Kistler, which verified the simulation model correctness. The obtained results provided a basis for edge preparation effect along with high-speed and high effective cutting machining comprehension.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1018
Author(s):  
Carola Esposito Corcione ◽  
Francesca Ferrari ◽  
Raffaella Striani ◽  
Antonio Greco

In this work, we studied the transport properties (thermal and electrical conductivity) of smart fabric materials treated with graphite nanomaterial stacks–acetone suspensions. An innovative and easy method to produce graphite nanomaterial stacks–acetone-based formulations, starting from a low-cost expandable graphite, is proposed. An original, economical, fast, and easy method to increase the thermal and electrical conductivity of textile materials was also employed for the first time. The proposed method allows the impregnation of smart fabric materials, avoiding pre-coating of the fibers, thus reducing costs and processing time, while obtaining a great increase in the transport properties. Two kinds of textiles, cotton and Lycra®, were selected as they represent the most used natural and artificial fabrics, respectively. The impact of the dimensions of the produced graphite nanomaterial stacks–acetone-based suspensions on both the uniformity of the treatment and the transport properties of the selected textile materials was accurately evaluated using several experimental techniques. An empirical relationship between the two transport properties was also successfully identified. Finally, several theoretical models were applied to predict the transport properties of the developed smart fabric materials, evidencing a good agreement with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document