Microstructure and Mechanical Properties of Multi-Pass Warm Rolled Ti-6Al-4V Alloy of Different Microstructures

2016 ◽  
Vol 716 ◽  
pp. 871-876
Author(s):  
Yong Xu ◽  
Xiang Jie Yang ◽  
Dan Ni Du

In this investigation three kinds of raw microstructure Ti-6Al-4V alloys were studied using two directional rolling on a conventional rolling mill. The effect of deformation on microstructure and mechanical properties has been attempted. Microstructural observation indicated that the size of the lamellar/equiaxed α grain was sharply decreased to submicro after multi-pass warm rolling. Tensile test results showed that the multi-pass warm rolling process was found to have a remarkable strengthening effect. The ultimate tensile strength and yield stress were increased by more than 10% and 25% respectively compared with unidirection rolled specimen, and the elongation has been increased by more than one times, and the maximum is up to 1.58 times. Meanwhile, the difference of the strength and elongation between in rolling direction and in transverse direction has been greatly reduced.

Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1337 ◽  
Author(s):  
Paul Lohmuller ◽  
Laurent Peltier ◽  
Alain Hazotte ◽  
Julien Zollinger ◽  
Pascal Laheurte ◽  
...  

The variations of the mechanical properties of the CoCrFeMnNi high entropy alloy (HEA) during groove cold rolling process were investigated with the aim of understanding their correlation relationships with the crystallographic texture. Our study revealed divergences in the variations of the microhardness and yield strength measured from samples deformed by groove cold rolling and conventional cold rolling processes. The crystallographic texture analyzed by electron back scattered diffraction (EBSD) revealed a hybrid texture between those obtained by conventional rolling and drawing processes. Though the groove cold rolling process induced a marked strengthening effect in the CoCrFeMnNi HEA, the mechanical properties were also characterized by an unusual decrease of the Young’s modulus as the applied groove cold rolled deformation increased up to about 0.5 before reaching a stabilized value. This decrease of the Young’s modulus was attributed to the increased density of mobile dislocations induced by work hardening during groove cold rolling processing.


2013 ◽  
Vol 744 ◽  
pp. 375-378
Author(s):  
Shi Ding Sun ◽  
Guo Yi Tang

Thermo-electropulsing rolling (TER) process, which combined the electropulsing treatment with the conventional warm rolling process (WR), was applied to manufacture AZ31 magnesium alloy strips in the current study. Influences of TER process and WR process on microstructure and mechanical properties of AZ31 Mg alloy were studied. TER process was found to induce and accelerate the dynamic recrystallization (DRX) behavior of the samples at a relatively low temperature within a short time. Besides, TER process could obtain samples with better mechanical properties than that of WR process.


2006 ◽  
Vol 116-117 ◽  
pp. 235-238 ◽  
Author(s):  
Ha Guk Jeong ◽  
Y.G. Jeong ◽  
Duk Jae Yoon ◽  
Seo Gou Choi ◽  
Woo Jin Kim

Magnesium alloy AZ31, which processed by conventional rolling or extrusion, has high anisotropy of mechanical properties in its strength and elongation at room temperature. We compared the influence of differential speed rolling with conventional rolling process on microstructure and mechanical properties of commercial AZ31 sheet. Commercial AZ31 alloy sheets were processed with conventional and differential speed rolled with thickness reduction ratio of 30% at a various temperature. The elongation of AZ31 alloy, warm-rolled by differential speed rolling is larger than rolled by conventional rolling. Besides, grain size and distribution on microstructure of the conventional rolling were coarsely(~30μm) and inhomogeneously but, that those of the differential speed rolling were fine(~13μm) and homogeneously.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3556 ◽  
Author(s):  
Tao Huang ◽  
Zhuo Song ◽  
Fuxiao Chen ◽  
Junqing Guo ◽  
Yanbo Pei ◽  
...  

Anisotropy is the difference in the microstructure or mechanical properties of materials in different directions. Anisotropic behavior occurs in rolled sheets, and this anisotropy is very obvious in laminated composites. In this work, the influence of anisotropy on the microstructure and mechanical properties of Ti/Al laminated composites fabricated by rolling was investigated. The results show that the microstructure and mechanical properties of the Ti/Al laminated composites were obviously anisotropic. The grains in the Al layer of the composites were elongated along the rolling direction and were compressed perpendicular to the rolling direction. The grains in the Ti layer of the composites had no obvious preferential orientation and comprised mainly twins. With the rolling direction as 0°, the mechanical properties of the Ti/Al laminated composites varied greatly as the angle of the composites increased. The tensile strength, elongation and bond strength of the Ti/Al laminated composites decreased with increasing angle of the composites. In addition, the microhardness of the Ti/Al laminated composites increased with increasing angle of the composites.


2011 ◽  
Vol 702-703 ◽  
pp. 68-75 ◽  
Author(s):  
Hirofumi Inoue

In order to develop favorable textures for deep drawing of Al-Mg-Si and Mg-Al-Zn alloys that are promising as automotive body panels, we have adopted the symmetric/asymmetric combination rolling (SACR) process consisting of conventional symmetric rolling and subsequent asymmetric rolling at relatively low reduction. The combination of symmetric cold rolling and asymmetric warm rolling for AA6022 sheets leads to the formation of “TD-rotated β-fiber texture”, resulting in the evolution of {111} recrystallization texture after solution treatment at a high temperature. The SACR processed and solution-treated sheets show a high average r-value with small in-plane anisotropy, and consequently the limiting drawing ratio increases significantly, compared to that of the cold-rolled and solution-treated sheets. In the case of AZ31 magnesium alloy, the SACR process by hot rolling causes the formation of a unique texture, which shows two (0001) poles with tilt angles of 0 and −40 degrees from the normal direction (ND) toward the rolling direction (RD). In addition, subsequent annealing weakens intensity of the double-peak texture, so that the drawability is greatly improved in comparison with that of the conventional warm-rolled sheets with a strong basal texture. At the same time, yield strength decreases to some extent, but the SACR processed and annealed sheets exhibit a good balance of strength and formability due to a mixed texture with basal and tilt components.


2005 ◽  
Vol 475-479 ◽  
pp. 529-532
Author(s):  
Tae Kwon Ha ◽  
Hwan Jin Sung ◽  
Woo Jin Park ◽  
Sang Ho Ahn

The effect of warm rolling under various conditions on the microstructure and mechanical property was investigated using an AZ31 Mg alloy sheet. Several processing parameters such as initial thickness, thickness reduction by a single pass rolling, rolling temperature, roll speed, and roll temperature were varied to elicit an optimum condition for the warm rolling process of AZ31 Mg alloy. Microstructure and mechanical properties were measured for specimens subjected to rolling experiments of various conditions. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as 200oC under the roll speed of 30 m/min. The initial microstructure before rolling was the mixed one consisting of partially recrystallized and cast structures. Grain refinement was found to occur actively during the warm rolling, producing a very fine grain size of 7 µm after 50% reduction in single pass rolling at 200oC. Yield strength of 204MPa, tensile strength of 330MPa and uniform elongation of 32% have been obtained in warm rolled sheets.


2015 ◽  
Vol 60 (4) ◽  
pp. 2821-2826 ◽  
Author(s):  
A. Wierzba ◽  
S. Mróz ◽  
P. Szota ◽  
A. Stefanik ◽  
R. Mola

The paper presents the results of the experimental study of the three-layer Al-Mg-Al sheets rolling process by the ARB method. The tests carried out were limited to single-pass symmetric and asymmetric rolling processes. An Al-Mg-Al package with an initial thickness of 4 mm (1-2-1 mm) was subjected to the process of rolling with a relative reduction of 50%. To activate the shear band in the strip being deformed, an asymmetry factor of av=2 was applied. From the test results, an increase in the tensile strength of the multi-layer Al-Mg-Al sheets obtained from the asymmetric process was observed. Microhardness tests did not show any significant differences in aluminium layer between respective layers of sheets obtained from the symmetric and the asymmetric process. By contrast, for the magnesium layer, an increase in microhardness from 72 HV to 79 HV could be observed for the asymmetric rolling. The analysis of the produced Al-Mg-Al sheets shows that the good bond between individual layers and grain refinement in the magnesium layer contributed to the obtaining of higher mechanical properties in the multi-layer sheets produced in the asymmetric process compared to the sheets obtained from the symmetric process.


2012 ◽  
Vol 557-559 ◽  
pp. 1344-1348
Author(s):  
Hong Mei Chen ◽  
Hua Shun Yu ◽  
Guang Hui Min ◽  
Yun Xue Jin

The microstructure and macrotexture of ZK60 alloy sheet were investigated through OM and XRD, which were produced by twin roll casting and sequential warm rolling. Microstructure of twin roll cast ZK60 alloy changed from dendrite structure to fibrous structure with elongated grains and high density shear bands along the rolling direction after warm rolling process at different rolling parameters. The density of shear bands increased with the decreasing of the rolling temperature, or the increasing of per pass rolling reduction. Dynamic recrystallization could be found during the warm rolling process at and above 350oC, and many fine grains could be found in the shear band area. The warm rolled ZK60 alloy sheet exhibited strong (0001) basal pole texture. The formation of the shear bands tends to cause the basal pole tilt slightly to the transverse direction after warm rolling. The intensity of (0001) pole figure increased with the decreasing of rolling temperature, or the increasing of per pass rolling reduction.


2022 ◽  
Vol 905 ◽  
pp. 44-50
Author(s):  
Li Wang ◽  
Ya Ya Zheng ◽  
Shi Hu Hu

The effects of welding wire composition on microstructure and mechanical properties of welded joint in Al-Mg-Si alloy were studied by electrochemical test, X-ray diffraction (XRD) analysis and metallographic analysis. The results show that the weld zone is composed of coarse columnar dendrites and fine equated grains. Recrystallized grains are observed in the fusion zone, and the microstructure in the heat affected zone is coarsened by welding heat. The hardness curve of welded joint is like W-shaped, the highest hardness point appears near the fusion zone, and the lowest hardness point is in the heat affected zone. The main second phases of welded joints are: matrix α-Al, Mg2Si, AlMnSi, elemental Si and SiO2. The addition of rare earth in welding wire can refine the grain in weld zone obviously, produce fine grain strengthening effect, and improve the electrochemical performance of weld.


Sign in / Sign up

Export Citation Format

Share Document