Synthesis and Conductivity Investigation of Cu Doped Apatite Type Lanthanum Silicate Electrolyte

2017 ◽  
Vol 726 ◽  
pp. 245-249
Author(s):  
Wen Zhao Li ◽  
Zhi Liang Huang ◽  
Qian Zi Li ◽  
Juan Chen

In this paper, Cu-doped lanthanum silicate electrolyte (La9.33Si6-xCuxO26-x) precursor was synthesized by urea-nitrate combustion method using La2O3, CuO and TEOS as raw materials. The as-prepared precursor was lighted at 600 °C and sintered at 800 °C. The sintered powder samples were grinded and mixed absolutely by ball milled. Finally, we preformed and sintered powder samples to synthesis Cu-doped lanthanum silicate ceramics. Ac impedance method and analysis was used to test conductivity of as-prepared electrolyte, investigated the influence of balling time, sintering temperature and doping content on conductivity property of LSO sintered product. The final result shows that best balling time is 3 h, secondary sintering temperature is 1500 °C and the doping content is 0.3. Under this condition, the conductivity of Cu-doped lanthanum silicate electrolyte could reach 7.28×10-3 s/cm at 700 °C.

2021 ◽  
Vol 7 (5) ◽  
pp. 56
Author(s):  
Yimin Yang ◽  
Xiaoying Li ◽  
Ziyu Liu ◽  
Dianjun Hu ◽  
Xin Liu ◽  
...  

Nanoparticles prepared by the coprecipitation method were used as raw materials to fabricate Y3Fe5O12 (YIG) ceramics by air pressureless sintering. The synthesized YIG precursor was calcinated at 900–1100 °C for 4 h in air. The influences of the calcination temperature on the phase and morphology of the nanopowders were investigated in detail. The powders calcined at 1000–1100 °C retained the pure YIG phase. YIG ceramics were fabricated by sintering at 1200–1400 °C for 10 h, and its densification behavior was studied. YIG ceramics prepared by air sintering at 1250 °C from powders calcinated at 1000 °C have the highest in-line transmittance in the range of 1000-3000 nm. When the sintering temperature exceeds 1300 °C, the secondary phase appears in the YIG ceramics, which may be due to the loss of oxygen during the high-temperature sintering process, resulting in the conversion of Fe3+ into Fe2+.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 422
Author(s):  
Kuai Zhang ◽  
Yungang Li ◽  
Hongyan Yan ◽  
Chuang Wang ◽  
Hui Li ◽  
...  

An Fe/FeAl2O4 composite was prepared with Fe-Fe2O3-Al2O3 powder by a hot press sintering method. The mass ratio was 6:1:2, sintering pressure was 30 MPa, and holding time was 120 min. The raw materials for the powder particles were respectively 1 µm (Fe), 0.5 µm (Fe2O3), and 1 µm (Al2O3) in diameter. The effect of sintering temperature on the microstructure and mechanical properties of Fe/FeAl2O4 composite was studied. The results showed that Fe/FeAl2O4 composite was formed by in situ reaction at 1300 °C–1500 °C. With the increased sintering temperature, the microstructure and mechanical properties of the Fe/FeAl2O4 composite showed a change law that initially became better and then became worse. The best microstructure and optimal mechanical properties were obtained at 1400 °C. At this temperature, the grain size of Fe and FeAl2O4 phases in Fe/FeAl2O4 composite was uniform, the relative density was 96.7%, and the Vickers hardness and bending strength were 1.88 GPa and 280.0 MPa, respectively. The wettability between Fe and FeAl2O4 was enhanced with increased sintering temperature. And then the densification process was accelerated. Finally, the microstructure and mechanical properties of the Fe/FeAl2O4 composite were improved.


2014 ◽  
Vol 616 ◽  
pp. 157-165 ◽  
Author(s):  
Chang Lian Chen ◽  
Hong Quan Wang ◽  
Jia You Ji ◽  
Ma Ya Luo ◽  
Bo Wu ◽  
...  

In this paper, using ZrO2 and Ca (NO3)•4H2O as raw materials, we prepared a series of calica stabilized zirconia (CSZ) ceramics by pressureless sintering method. The results show that the relative densities of all sintered samples are above 90%, and the sintered samples are composed of cubic, tetragonal and monoclinic ZrO2, and the main phase is cubic ZrO2 and tetragonal ZrO2. The content of cubic phase increases with the increase of sintering temperature and adding CaO content. The grain size of the sintered samples is relatively uniform and some pores exist. Increasing the additive amount of CaO, the conductivity first rises and then decreases, and the conductivity value of the sample containing 5wt% CaO is the maximum. When the sintering temperature is up to 1600 oC, the conductivity of the sample containing 5wt% CaO is up to 0.016S•cm-1 at 800 oC. Furthermore, the conductivity of sintered samples is increasing with the increase of test temperature according to the Arrhenius equation.


2016 ◽  
Vol 881 ◽  
pp. 383-386 ◽  
Author(s):  
Raimundo J.S. Paranhos ◽  
Wilson Acchar ◽  
Vamberto Monteiro Silva

This study evaluated the potential use of Sugarcane Bagasse Ashes (SBA) as a flux, replacing phyllite for the production of enamelled porcelain tile. The raw materials of the standard mass components and the SBA residue were characterized by testing by XRF, XRD, AG, DTA and TGA. Test samples were fabricated, assembled in lots of 3 units and sintered at temperatures of 1150 ° C to 1210 ° C. The results of the physical properties, mechanical properties and SEM of the sintered samples, showed that the formulation, G4 - in which applied 10% of SBA replacing phyllite, sintering temperature 1210 ° C showed better performance as the previously mentioned properties due to the formation of mullite crystals, meeting the prerequisites of standards for enamelled porcelain tile, while reducing the environmental impact and the cost of production.


2014 ◽  
Vol 602-603 ◽  
pp. 640-643
Author(s):  
Yu Fei Chen ◽  
Yan Gai Liu ◽  
Xiao Wen Wu ◽  
Zhao Hui Huang ◽  
Ming Hao Fang

Mica glass-ceramics can be applied in all kinds of electrical equipment, locomotive internal circuits in high-speed rail, ordinary electric locomotive and subway locomotive. In this study, mica glass-ceramics were prepared by sintering process using flake mica and waste glass as the main raw material with low cost. Different mica glass-ceramic samples were fabricated by changing the formula of raw materials, molding process and sintering temperature. X-ray diffraction, scanning electron microscopy, three-point bending test, and balanced-bridge technique were applied to investigate the phase, microstructure, mechanical and electrical resistivities of the samples, respectively. The results show that the optimum sintering temperature is 900 to 1000 °C holding for two hours, the desirable ratio is 70 wt% of mica powder while 30 wt% of glass powder. In that condition the sample could be less porosity, high flexural strength (63.3 MPa) and eligible electrical resistivity (0.4×1013 Ω·cm).


2011 ◽  
Vol 399-401 ◽  
pp. 855-859
Author(s):  
Ting Ting Wu ◽  
Bo Lin Wu

In order to improve the acid resistance and reduce the apparent density of fracturing proppants, TiO2 powder added in the system of BaO-MgO-Al2O3 fracturing proppants were prepared by the technique of pressureless sintering. The properties of the samples were investigated by the measurements of acid solubility, X-ray diffraction and scanning electron microscopy. The results show that the acid solubility of alumina matrix fracturing proppants contenting TiO2 of the 4wt% and BaO/MgO with the ratio of 3:7 is 0.15%. It is an important development in acid resistance performance of fracturing proppants research on laboratory. TiO2 is added to the raw materials and then calcine them to ceramics, which can reduces the sintering temperature, promote the densification and improve acid-resistant property of fracturing proppants.


2014 ◽  
Vol 633 ◽  
pp. 61-64
Author(s):  
Lei Li ◽  
Rui Long Wen ◽  
Xiao Guang Zhang ◽  
Cheng Biao Wang ◽  
Ming Hao Fang ◽  
...  

Cordierite samples were prepared using quartz sand tailings, industrial alumina and magnesite tailings as raw materials by high-temperature reaction. The influence of mineral composition and sintering temperature on the final phase composition and physical properties of cordierite were studied. The results shown that a large number of cordierite generated at 1300 °C. When the ratio of Al2O3/SiO2 equals to 1.08, the flexural strength of samples increased to 27.66 MPa.


2018 ◽  
Vol 922 ◽  
pp. 143-148 ◽  
Author(s):  
Shao Chun Xu ◽  
Zi Jing Wang ◽  
Ya Ming Zhang ◽  
Qiang Zhi ◽  
Xu Dong Wang ◽  
...  

In this paper, clay bonded silicon carbide was prepared through pressureless sintering process with silicon carbide dusting powder as raw materials and clay as sintering additive. The effects of the ball-milling method, sintering temperature and clay contents on the density, microstructure and mechanical properties of clay bonded silicon carbide refractory were studied. The planetary ball-milling was a good method to improve the density of the green body, and the density was increased simultaneously with an increase of the clay content. The liquid phase derived from low-melting eutectic mixtures of clay could prevent the superlative oxidation of silicon carbide. The mass increment of sintered samples decreased firstly and then increased at the sintering temperature range from 1250 to 1500 °C. The open porosity of samples decreased with the clay addition at a content range from 10 to 30 wt.%. The bending strength of the samples decreased firstly and then increased with the clay addition increasing. The optimum condition for preparing clay bonded silicon carbide with silicon carbide dusting powder was sintering at 1350 °C with 20 wt.% clay, and the obtained sample with a porosity of 24% achieved the bending strength of 78±7 MPa.


Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 987
Author(s):  
Jin Shi ◽  
Yongfei Hong ◽  
Chengfei Zhu

The beta-Al2O3 solid electrolyte doped with Chromium was synthesized via a citrate-nitrate combustion method, which started with NaNO3, LiNO3, Cr(NO3)3·9H2O, and Al(NO3)3·9H2O as the raw materials in this paper. The thermal behavior analysis, structure, and ionic conductivity of the beta-Al2O3 solid electrolyte were studied by the thermogravimetry/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). Meanwhile, the relative density and bending strength of the samples were also measured. The results showed that with the appropriate Chromium doping, the calcining temperature of the precursor powders was only 1100 °C, the β″-Al2O3 phase content, bending strength, relative density, and ionic conductivity were all improved with a compact and uniform cross section micrograph. The optimized sample contained 94% of β″-Al2O3 phase and exhibited a relative density up to 98.13% of the theoretical density. In addition, it showed a good bending strength (215 MPa) and a satisficed ionic conductivity (0.110 S cm−1 at 350 °C).


Sign in / Sign up

Export Citation Format

Share Document