Effects Studying of Annealing to Mechanical Properties Carbon-Doped Ti-O Films Synthesized Using CO2 Gas

2017 ◽  
Vol 727 ◽  
pp. 915-922
Author(s):  
Hong Wu Liu ◽  
Yong Yao Su ◽  
Xiao Yu Huang ◽  
Jian Lu Xue ◽  
Feng Wen

Carbon-doped Ti-O films were deposited on steel and silicon wafer by DC reaction magnetron sputtering (R-MS) using CO2 as carbon and oxygen source. A series of films were prepared by means of changing the flow of CO2 or O2. The effects of annealing temperature ranging from 300 to 650°C on the properties of Ti-O films under vacuum were studied. X-ray diffraction (XRD) and field emission scanning electronic microscope (FESEM) were employed to analyze and observe structure and morphology of pre-or after-annealed Ti-O films. nanoindentation was used to measure nanohardness and modulus, and recovery was also calculated by the curves of load-displacement. Roughness and thickness were estimated by surface profiler. The XRD studies revealed that the doping of carbon was beneficial to the crystallization of the films. The results showed that the particle size of Ti-O films increased with the increase of annealing temperature, as-annealed carbon-doped Ti-O films have fair mechanical performance.

Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1563
Author(s):  
Sofia Marquez-Bravo ◽  
Ingo Doench ◽  
Pamela Molina ◽  
Flor Estefany Bentley ◽  
Arnaud Kamdem Tamo ◽  
...  

Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic–basic–neutralization–stretching–drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young’s modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m−3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.


2019 ◽  
Vol 397 ◽  
pp. 118-124
Author(s):  
Linda Aissani ◽  
Khaoula Rahmouni ◽  
Laala Guelani ◽  
Mourad Zaabat ◽  
Akram Alhussein

From the hard and anti-corrosions coatings, we found the chromium carbides, these components were discovered by large studies; like thin films since years ago. They were pointed a good quality for the protection of steel, because of their thermal and mechanical properties for this reason, it was used in many fields for protection. Plus: their hardness and their important function in mechanical coatings. The aim of this work joins a study of the effect of the thermal treatment on mechanical and structural properties of the Cr/steel system. Thin films were deposited by cathodic magnetron sputtering on the steel substrates of 100C6, contain 1% wt of carbon. Samples were annealing in vacuum temperature interval between 700 to 1000 °C since 45 min, it forms the chromium carbides. Then pieces are characterising by X-ray diffraction, X-ray microanalysis and scanning electron microscopy. Mechanical properties are analysing by Vickers test. The X-ray diffraction analyse point the formation of the Cr7C3, Cr23C6 carbides at 900°C; they transformed to ternary carbides in a highest temperature, but the Cr3C2 doesn’t appear. The X-ray microanalysis shows the diffusion mechanism between the chromium film and the steel sample; from the variation of: Cr, Fe, C, O elements concentration with the change of annealing temperature. The variation of annealing temperature shows a clean improvement in mechanical and structural properties, like the adhesion and the micro-hardness.


1995 ◽  
Vol 400 ◽  
Author(s):  
H. Van Swygenhoven ◽  
W. Wagner ◽  
J. Löffler

AbstractMechanical properties of nanostructured intermetallic Ni3Al synthesized by the inert-gas condensation technique are studied by means of instrumental indentation using the ICT-CSEMEX indenter. This instrument is a microindenter which continously measures load and displacement. Load-displacement curves are performed as function of grain size, consolidation- and annealing temperature. The mean grain size of the samples are studied by means of x-ray diffraction and small-angle neutron scattering.


2013 ◽  
Vol 303-306 ◽  
pp. 2524-2527 ◽  
Author(s):  
Lei Wang ◽  
Guang Hui Min ◽  
Pan Pan Gao ◽  
Xin Ying Wang ◽  
Hua Shun Yu ◽  
...  

The microstructure of magnesium alloy sheets (nominal composition Mg–6Zn–Y in at. %) was investigated with the Optical Microscope (OM), Scanning Electron Microscope (SEM) and X-ray Diffraction (XRD) technique after the annealing treatment. Tensile test at room temperature was performed to show the influence of annealing treatment on mechanical properties. Experimental results indicate that there are a large number of twin crystals appearing in microstructure of the extruded Mg-Zn-Y alloy sheet at 350 °C. The distinct icosahedral phase appears on the α-Mg matrix in granular form and the strength gets largely improved to the maximum. The uniform distribution of isometric crystal contributes to the best elongation at the annealing temperature of 400 °C.


2017 ◽  
Vol 11 (2) ◽  
pp. 100-105 ◽  
Author(s):  
Song Wang ◽  
Yaping Wang ◽  
Kangning Sun ◽  
Xiaoning Sun

In this work, ?-tricalcium phosphate (?-TCP) was successfully prepared by the thermal transformation of amorphous calcium phosphate (ACP) precursor. ?-cyclodextrin (?-CD) was used for preparation of ACP precursor and played an important role in designing its special structure. The phase composition and microstructures of the obtained ?-TCP at different annealing temperature were analysed by X-ray diffraction and scanning electron microscope, and confirmed that ?-TCP can be prepared at 650?C for 3 h using ACP as precursor, which is much lower than the phase transition temperature of ?-TCP. Mechanical properties were tested 24 h after mixing the obtained ?-TCP with 30 wt.% of deionised water. The compressive strength and the flexural strength were 26.4MPa and 12.0MPa, respectively. The flexural strength was higher than that of ?-TCP prepared by other methods.


2018 ◽  
Vol 11 (05) ◽  
pp. 1850033 ◽  
Author(s):  
Shuanglei Li ◽  
Tae-Hyun Nam

In this study, the effect of annealing temperature on microstructure and mechanical properties of a Ti–18Zr–12.5Nb–2Sn (at.%) alloy was investigated by using optical microscopy (OM), X-ray diffraction (XRD) measurement and tensile test. The cold-rolled plate was annealed at temperatures between 773[Formula: see text]K and 1173[Formula: see text]K. Recrystallization occurred in the specimen annealed at 873[Formula: see text]K. Grain size increased from 8[Formula: see text][Formula: see text]m to 80[Formula: see text][Formula: see text]m with increasing temperature from 873[Formula: see text]K to 1173[Formula: see text]K. The ultimate tensile strength decreased from 1590[Formula: see text]MPa to 806[Formula: see text]MPa with increasing annealing temperature from 773[Formula: see text]K to 973[Formula: see text]K, and then showed similar value in the specimens annealed at temperatures from 973[Formula: see text]K to 1173[Formula: see text]K. The fracture strain increased from 3.8% to 41.0% with increasing annealing temperature from 773[Formula: see text]K to 1173[Formula: see text]K due to the recovery and recrystallization. The recovery strain increased with increasing of annealing temperature attributed to the evolution of recrystallization texture.


2013 ◽  
Vol 795 ◽  
pp. 124-127 ◽  
Author(s):  
Nur Farhana Hayazi ◽  
Yu Wang ◽  
Mohd Noor Mazlee ◽  
Sammy Lap Ip Chan

This work investigates the dehydrogenation of TiH2 powder during isothermal heating at 600°C using the static x-ray scans of high temperature x-ray diffraction (XRD). As-received TiH2 powder with a particle size of 5 μm and purity of 99.1% was used for this measurement. With increasing temperature, phase transformations occurred because of dehydrogenation and it happened very fast. It was found that during the phase transformation of TiH2 to titanium, some transitional phases observed and occurred. This finding confirmed the in-situ determination of TiH2 powder dehydrogenation by using Rietveld Refinement Method from our previous research. This study is useful for the fabrication of titanium-based composites and titanium alloys from TiH2 powder because the different phases in TiH2 will affect the final mechanical properties in titanium.


2019 ◽  
Vol 23 (10) ◽  
pp. 81
Author(s):  
Ismaeal K. Jasem1 ◽  
Abdul-Samee Fawzi Abdul-Aziz2 ◽  
Nibras Malallah Ibrahim1

Ferrite-ferroelectric composites holds following chemical formula (y) Mn0.6 Zn0.4 Fe2O4 + (1-y) PZT with different weight rations (y=0.15, 0.30 and 0.45) are prepared by the powder technology method at annealing temperature (1000 °C) for (12hrs). The structural properties are also studied representing by the lattice constants (a, c), particle size (Dt), apparent density (ρa), and X-ray density (ρx). It has been shown that increasing the concentration of the ferrite phase contributes to an increase in the lattice constant, apparent density and X-ray density which in turn contribute in decreasing porosity that plays a role in improving the physical properties of the samples as well as the weight ratios of the mixture after the final sintering with reference to x-ray diffraction technique. In addition, the spectral properties were also studied represented by the vibration force constant and regions of optical absorption in terms of IR technique.     http://dx.doi.org/10.25130/tjps.23.2018.174  


2019 ◽  
Vol 818 ◽  
pp. 82-86
Author(s):  
Xin Xu ◽  
Ren Dong Liu ◽  
Bao Yu Xu ◽  
Hong Liang Yi ◽  
Guo Dong Wang

In this work, a novel type of δ-TRIP steel was designed, and the content and stability of retained austenite in δ-TRIP specimens under different annealing processes were detected and studied, respectively. The volume fraction of austenite was determined by X-ray diffraction (XRD). The microstructure and mechanical properties were analyzed systematically. The results show that a complex microstructure composed of three phases (ferrite, bainite and retained austenite) was obtained in the δ-TRIP steel. With the increasing of annealing temperature, both retained austenite and bainite content in the specimen increased, while the carbon content in retained austenite decreased, leading to a poor stability for retained austenite. Both tensile and yield strength improved with the increasing of annealing temperature, while the elongation reduced. The feature of retained austenite led to an excellent combination of ductility and strength, which was better than traditional TRIP steel.


2008 ◽  
Vol 373-374 ◽  
pp. 59-63
Author(s):  
Liu Ying Wang ◽  
Gu Liu ◽  
Han Gong Wang ◽  
Shao Chun Hua

Nonastructured Al2O3-13wt%TiO2 (AT13) coatings were deposited by multi-function micro-plasma spray and Metco 9M plasma spray, respectively. Constituent phases and the microstructure of the powder particles and coatings prepared were examined with the aid of scanning electronic microscope (SEM) and X-ray diffraction (XRD). Mechanical properties including hardness and bonding strength were also evaluated by microhardness tester and electron tensile tester. Multi-function micro plasma sprayed nanostructured AT13 Coating is fully-melted, dense and uniform. However, AT13 Coating deposited by Metco 9M plasma spray is partial-melted. The microhardness of multi-functional micro plasma sprayed AT13 Coating is HV975.7~1441.7, much higher than that of Metco 9M plasma sprayed AT13 Coating (HV655.3~946.6). The bonding strength results present the same, increased from 19.8 MPa to 42.7 MPa.


Sign in / Sign up

Export Citation Format

Share Document