Annealing Effects in Nanograined Al-Cu-Mg Alloy Processed by Equal Channel Angular Pressing

2017 ◽  
Vol 748 ◽  
pp. 240-244
Author(s):  
Hassan Houcin Ktari ◽  
Jean Philippe Couzine ◽  
Julie Bourgon ◽  
Yannick Champion ◽  
Nabil Njah

The microstructure and mechanical properties were investigated in an industrial Al-Cu-Mg alloy processed by Equal Channel Angular Pressing ECAP and heating. The die used is formed by two channels intersecting at an angle 90°. Transmission Electron Microscopy (TEM) and orientation (ASTAR) imaging were used in addition to hardness measurements. After heating, a sub-micron grain size is retained. In addition, a further hardening is observed due to secondary precipitation. Differential Scanning Calorimetry (DSC) showed that the activation energy of θ’ precipitation is strongly lowered after ECAP.

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 841 ◽  
Author(s):  
Jingli Yan ◽  
Zijun Qin ◽  
Kai Yan

Equal-channel angular pressing (ECAP) was performed on a Mg (6 wt %) Zn alloy at temperatures from 160 to 240 °C and the microstructures and mechanical properties were studied using optical microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and an electronic universal testing machine. The results showed that ECAP was effective for grain refinement and a bi-modal grain structure formed at low temperatures, which was stable during ECAP from 160 to 200 °C. MgZn2 phase and Mg4Zn7 phase were generated during the ECAP process. The mechanical properties remarkably increased after two repetitions of ECAP. However, the strengths could not be further improved by increasing the plastic deformation, but decreased when ECAP was performed between 200 and 240 °C. The mechanical properties of the ECAP Mg-6Zn alloy was determined by a combination of grain refinement strengthening, precipitation hardening, and texture softening.


2010 ◽  
Vol 667-669 ◽  
pp. 791-796
Author(s):  
Gang Yang ◽  
Mu Xin Yang ◽  
Zheng Dong Liu ◽  
Chang Wang ◽  
Chong Xiang Huang

Commercial pure iron billets having diameter of 60 mm and length of 180 mm were subjected to equal channel angular pressing (ECAP) at 350 °C for 1-4 passes via route BC. Microstructural evolutions on three planes (X, Y, Z planes) were characterized by optical microscopy and transmission electron microscopy (TEM). It was found that after four passes an ultrafine microstructure could be formed on the X plane, but a band structure remained on the Z plane. Accordingly, the mechanical properties exhibited apparent dependence on the orientations. The strength in the X and Y directions was higher than that in the Z direction. The microstructural refinement and mechanical properties were discussed in terms of experimental results.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Przemysław Snopiński ◽  
Mariusz Król ◽  
Marek Pagáč ◽  
Jana Petrů ◽  
Jiří Hajnyš ◽  
...  

AbstractThis study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.


2014 ◽  
Vol 1004-1005 ◽  
pp. 148-153
Author(s):  
Min Hao ◽  
Ji Gang Ru ◽  
Ming Liu ◽  
Kun Zhang ◽  
Liang Wang ◽  
...  

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to study the microstructure and mechanical behavior of an Al-Cu-Mg alloy after tensile test at 125°C, 150°C, 175°C and 200 °C, respectively. The yield strength and ultimate tensile strength decreased with the increase of temperature, while the elongation increased firstly and then decreased. The S and S′ precipitate after tension at elevated temperatures. When the temperature was higher than 175°C, the precipitate coarsens rapidly. The alloys displayed a shear fracture features at elevated temperature. The larger S′ and S phase coarsened and dropped which forming crack in the grain boundaries and precipitate interfaces, resulting in the decrease of the elongation of the alloy.


2005 ◽  
Vol 475-479 ◽  
pp. 545-548 ◽  
Author(s):  
Hyo Tae Jeong ◽  
Woo Jin Kim

Microstructure and texture evolution in the AZ31 Mg alloy subject to equal channel angular pressing (ECAP) have been investigated and correlated with the mechanical properties. When AZ31 Mg alloy was ECAPed up to 8 passes following the route Bc, grain refinement occurred effectively. Texture was also changed during ECAP. The original fiber texture of the extruded AZ31 Mg alloy changed to a new texture component of ] 1 3 2 5 )[ 1 1 01 ( , and the texture of ] 1 3 2 5 )[ 1 1 01 ( orientation was rotated to ] 0 2 5 7 )[ 6 4 13 ( orientation after 6-pass ECAP process. The variation of the strength with the pass number was explained by the texture and grain size. The strength data of AZ31 Mg alloys followed the standard Hall-Petch relationship when the similar texture was retained during the ECAP process. Otherwise the effect of texture on strength was dominant over the strengthening due to grain refinement.


2008 ◽  
Vol 575-578 ◽  
pp. 941-946
Author(s):  
Hong Yan Tang ◽  
Ji Hui Wang ◽  
Guo Qiang Gao ◽  
Wen Xing Chen

Fiberglass continuous strand mat(CSM)/poly(urethane-isocyanurate) composites were formed by SRIM process, treated under different conditions and then characterized based on dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) ,transmission electron microscopy (TEM) and the mechanical property tests. The results show that the mechanical properties of the composites could be increased with improving the degree of microphase separation. At a given temperature (120°C), the degree of microphase separation is the highest for 4h and decreases gradually with prolonging treatment time. For a given time (4h), the well microphase-separated morphology is obtained and the degree of microphase mixing is increased at 120°C and 140°C treatments, respectively. The degree of microphase separation of the composites decreases with enhancing the temperature to 140°C.


2012 ◽  
Vol 57 (3) ◽  
pp. 711-717 ◽  
Author(s):  
K. Bryła ◽  
J. Dutkiewicz ◽  
L. Litynska-Dobrzynska ◽  
L.L. Rokhlin ◽  
P. Kurtyka

The aim of this work was to investigate the influence of the number of equal channel angular pressing (ECAP) passes on the microstructure and mechanical properties of AZ31 magnesium alloy. The microstructure after two and four passes of ECAP at 423 and 523 K was investigated by means of optical and transmission electron microscopy. The mechanical properties were carried out using Vickers microhardness measurements and compression test. The grain refinement in AZ31 alloy was obtained using ECAP routes down to 1,5 μm at 423 K. Processes of dynamic recrystallization during ECAP were observed. It was found that a gradual decrease of grain size occurs with the increasing of number of ECAP passes. The grain refinement increases mechanical properties at ambient temperature, such as Vickers microhardness and compression strength proportionally to d-0.5.


Mechanika ◽  
2016 ◽  
Vol 22 (4) ◽  
Author(s):  
Yuchun Yuan ◽  
Aibin Ma ◽  
Jinghua Jiang ◽  
Xiaofan Gou ◽  
Dan Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document