Effect of Aluminum Addition on AlxCoFeMnNiZn Multi-Component Production

2017 ◽  
Vol 751 ◽  
pp. 53-59 ◽  
Author(s):  
Amnart Suksamran ◽  
Nawarat Worauaychai ◽  
Nattaya Tosangthum ◽  
Thanyaporn Yodkaew ◽  
Rungtip Krataitong ◽  
...  

Five multi-component alloy (MCA) formulations of CoFeMnNiZn (MCA01), Al0.5CoFeMnNiZn (MCA02), Al1.0CoFeMnNiZn (MCA03), Co5Fe5Mn30Ni20Zn40 (MCA04) and Al8.4Co4.6Fe4.6Mn27Ni18.4Zn37 (MCA05) were prepared by mechanical alloying and melting process (MAM). Five-component alloys of MCA01-MCA05 were designed using empirical formulae for high entropy alloys. Phase formation and microstructure were evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that MCA01 was partially melted by MAM process. However, MCA02-MCA05 could be melted and cast by MAM process. The microstructures of as-cast MCA02 and MCA03 showed dendritic solidification. Nevertheless, the as-cast MCA04 showed microstructure similar to that of Ni-based superalloy, i.e., the as-cast MCA04 consisted of γ matrix and γ′ phase. Moreover, egg type core shell structure was found in the interdendritic regions of the MCA05 alloy. In addition, the Al-added MCA02 and MCA03 alloys showed crystal structures of FCC1, FCC2 and BCC. MCA04 alloy demonstrated crystal structure of FCC whereas MCA05 alloy had crystal structures of FCC and Primitive Cubic.

2013 ◽  
Vol 834-836 ◽  
pp. 559-562 ◽  
Author(s):  
Juntima Pradid ◽  
Wirunya Keawwattana ◽  
Siree Tangbunsuk

An ultrasound field was applied to obtain Polylactic acid (PLA)/Hydroxyapatite (HAp) biocomposite microspheres with the specific core-shell structure to be applied as a carrier of a drug. The hydroxyapatite was obtained from crocodile bone by thermal process. Sample characterization was achieved by powder X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX) Scanning electron microscopy (SEM) and High Performance Liquid Chromatography (HPLC). As the result, the PLA/HAp loading clindamycin with different polymer-to-ceramic part wt.% ratio (100:0, 90:10, 80:20, and 70:30) showed the agglomeration of sphere-like particles. In addition, the loading efficiency of clindamycin increased with increasing HAp content up to 20%.


2013 ◽  
Vol 652-654 ◽  
pp. 683-686
Author(s):  
An Dong Yuan ◽  
Yue Lu Zhang ◽  
Wei Guang Yang ◽  
Ji Rong Li ◽  
Yang Liao ◽  
...  

ZnO@ZnS nano-array core-shell structure was synthesized through a solution method using a thioacetamide (TAA) solution in deionized water. The as-synthesized ZnO nano-array and TAA solution were employed to supply zinc and sulfur ions to form the ZnO@ZnS core-shell structures. The properties of the structure were characterized by X-ray diffraction (XRD), Raman spectrum, scanning electron microscopy (SEM) and UV-Vis spectra. The results indicate that ZnO nano-array was coated with ZnS particles. The concentration of TAA solution can affect the diameter, surface roughness and optical properties of the ZnO@ZnS nano-array core-shell structures.


2021 ◽  
Vol 60 (2) ◽  
pp. 71-80
Author(s):  
Konrad Chrzan ◽  
Kamil Cichocki ◽  
Piotr Adamczyk ◽  
Krzysztof Muszka

The aim of this work was to study the impact of various fabrication methods used to prepare high entropy alloys based on the AlFeMnNbNiTi system. Chemical composition was customized to ensure a solid solution structure with precipitation of the Laves phase. The three manufactured alloys were prepared by melting, but with the use of various input materials and different furnaces in protective atmospheres. After the melting process, heat treatment was carried out. Structures of obtained materials were analyzed by means of a Scanning Electron Microscope (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) mapping. Mechanical properties were represented by Vickers hardness. In this paper, impact of the use of low purity input materials is shown, as well as differences in structure resulting from the utilization of different melting furnaces.


2017 ◽  
Vol 898 ◽  
pp. 638-642 ◽  
Author(s):  
Dong Xu Qiao ◽  
Hui Jiang ◽  
Xiao Xue Chang ◽  
Yi Ping Lu ◽  
Ting Ju Li

A series of refractory high-entropy alloys VTaTiMoAlx with x=0,0.2,0.6,1.0 were designed and produced by vacuum arc melting. The effect of added Al elements on the microstructure and mechanical properties of refractory high-entropy alloys were investigated. The X-ray diffraction results showed that all the high-entropy alloys consist of simple BCC solid solution. SEM indicated that the microstructure of VTaTiMoAlx changes from equiaxial dendritic-like structure to typical dendrite structure with the addition of Al element. The composition of different regions in the alloys are obtained by energy dispersive spectroscopy and shows that Ta, Mo elements are enriched in the dendrite areas, and Al, Ti, V are enriched in inter-dendrite areas. The yield strength and compress strain reach maximum (σ0.2=1221MPa, ε=9.91%) at x=0, and decrease with the addition of Al element at room temperature. Vickers hardness of the alloys improves as the Al addition.


2015 ◽  
Vol 662 ◽  
pp. 217-220 ◽  
Author(s):  
Ondrej Milkovič ◽  
Jana Michaliková ◽  
Jozef Bednarčík ◽  
Štefan Michalik

This work deals with the strain at the core-shell interface of Fe nanoparticles. Series of Fe nanoparticles with various mean diameters were prepared by precipitation in solid state in binary Cu-Fe alloy. Further, nanoparticles were isolated by dissolution of Cu matrix. High-energy X-ray diffraction (XRD) was used to probe structure of nanoparticles. XRD measurements suggest presence of the core-shell structure, where core and shell of the nanoparticles are formed of α-Fe and CuFe2O4 phase, respectively. Strains in core and shell were estimated as a function of nanoparticles size by Williamson-Hall method.


2009 ◽  
Vol 79-82 ◽  
pp. 1643-1646 ◽  
Author(s):  
Qing Lin ◽  
Yan Bao Li ◽  
Xiang Hui Lan ◽  
Chun Hua Lu ◽  
Zhong Zi Xu

The amorphous calcium phosphate (ACP)/tricalcium silicate (Ca3SiO5, C3S) composite powders were synthesized in this paper. The exothermal behavior of C3S determined by isothermal conduction calorimetry indicated that the ACP could be synthesis by chemical precipitation method during the induction period (stage II) of C3S. The composite powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results indicated that nanosized ACP particles deposited on the surface of C3S particles to form core-shell structure at pH=10.5, and the nCa/nP of ACP could be controlled between 1.0 and 1.5. The core-shell structure is stable after sintered at 500 oC for 3 h to remove the β-cyclodextrin (β-CD). As compared with the irregular C3S particles (1~5 μm), the composite powders particles are spherical with a diameter of 40~150 μm. Therefore, to obtain the smaller size of composite powders, it is expected to avoid the aggregate of C3S particles in the aqueous solution by addition of dispersant. As compared with C3S, the composite powders may contribute better injectability, strength and biocompatibility.


2016 ◽  
Vol 30 (07) ◽  
pp. 1650074 ◽  
Author(s):  
M. Molaei ◽  
F. Salari Bardsiri ◽  
A. R. Bahador ◽  
M. Karimipour

In this work, CdSe QDs were synthesized using a microwave assisted method and chemical reaction between NaHSe, CdSO4 at the presence of TGA as capping molecule. Thereafter without CdSe extraction, CdS shell was grown subsequently around CdSe cores by a reaction based on the heat sensitivity of Na2S2O3 dissociation. Synthesized QDs were characterized by means of X-ray diffraction spectroscopy (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), UV–Vis and photoluminescence (PL) spectroscopy. All of these analyzes confirmed formation of CdSe QDs and successfully growth of CdS shell on surface of CdSe to forming CdSe/CdS core-shell structure.


2015 ◽  
Vol 128 (4) ◽  
pp. 552-557 ◽  
Author(s):  
U. Dahlborg ◽  
J. Cornide ◽  
M. Calvo-Dahlborg ◽  
T.C. Hansen ◽  
Z. Leong ◽  
...  

Author(s):  
Sridharan Balu ◽  
Kasimayan Uma ◽  
Guan-Ting Pan ◽  
Thomas C.-K. Yang ◽  
Sayee Kannan Ramaraj

Semiconductor materials have been shown to have better photocatalytic behavior and can be utilized for the photodegradation of organic pollutants. In this work, three-dimensional flower-like SnS2 were synthesized by a facile hydrothermal method. Core-shell structured SiO2@α-Fe2O3 nanocomposites were then deposited on the top of the SnS2 flowers. The as-synthesized nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) and photoluminescence spectroscopy (PL). The photocatalytic behavior of the SnS2-SiO2@α-Fe2O3 nanocomposites was observed by observing the degradation of methylene blue (MB). The results show an effective enhancement of photocatalytic activity for the degradation of MB especially for the 15 wt. % SiO2@α-Fe2O3 nanocomposites on SnS2 flowers.


Sign in / Sign up

Export Citation Format

Share Document