Mechanical Joining of Glass and Aluminium

2018 ◽  
Vol 767 ◽  
pp. 369-376 ◽  
Author(s):  
Stefan Veenaas ◽  
Frank Vollertsen

The ongoing trend of miniaturization and increasing function integration makes it necessary to join different sheet materials in the micro range. Conventional joining processes cannot be scaled down to smaller dimension due to so called size effects. Thermal based joining processes, like welding or brazing can lead to distortion, which are more critical in the micro range. Normally ceramic materials can only be joined using extra joining elements like glue or bolts. Laser shock joining is a promising mechanical joining process for delicate material combinations. This process usesTEA-CO2-laser induced shockwaves. Several pulses are applied at one point to achieve high forming degrees without increasing the energy density beyond the ablation limit. The laser irradiates on the forming sheet and creates a plasma plume above the surface, which leads to a shockwave. This shockwave pushes the material in the joining area and creates an undercut which presents the joint itself. The laser induced shockwave is used to create an undercut underneath the other material. The form closure between the two materials enables a joint. So far, investigations were performed to identify the process window and the joining strength for aluminum and steel joints. The influence of die sheet materials is negligible, so that this process can be used for joining of dissimilar materials like aluminum and glass. Therefore, in this paper the suitability of this process for the mechanical joining of aluminum and glass is investigated. It is found that the tools need to be adjusted for the joining process. It is shown that a mechanical joining of aluminum and glass is possible. The joining strength is 53% of the theoretical maximum of the material strength of the aluminum. The limiting factor is the strength of the glass, which is breaking during the tensile tests.

2017 ◽  
Vol 107 (10) ◽  
pp. 736-742
Author(s):  
M. Prof. Liewald ◽  
D. Hofmann

Die Rückfederung höchstfester Stähle und Aluminiumlegierungen muss nach dem Umformen zum Beispiel im modernen Karosseriebau mit vielfältigen Maßnahmen kompensiert werden, um maßhaltige Karosserien zu bekommen. Neue Forschungsarbeiten zeigen, dass dieser nachteilige Effekt des Aufsprungs in Multi-Material-Anwendungen aus Blech als mechanisches Fügeverfahren zum Vorteil neuer Verbindungen eingesetzt werden kann. Um möglichst hohe Verbindungsfestigkeiten zwischen den zwei metallischen Platinen zu erzielen, muss jene Platine, welche die innere Bauteilgeometrie bildet, eine betragsmäßig größere radiale Rückfederung als die äußere Platine aufweisen.   The springback effect of high-strength steels and aluminum alloys is unintended and must be compensated after forming modern car body parts when an accurate dimensional accuracy for the final assembly process is pursued. New research shows that this disadvantageous springback effect in multi-material applications can be used as a mechanical joining process. To achieve the highest possible joining strength between the two sheets, the springback effect of the inner sheet should be higher than that of the outer sheet.


Author(s):  
Che-Hao Yang ◽  
Roland K. Chen ◽  
Scott Phillips ◽  
Josh Ramsay ◽  
Wei Li

Electrosurgical tissue joining is an effective way to create hemostasis, especially in surgical procedures performed in the minimally-invasive manner. The quality of tissue joints and potential thermal damage to the surroundings are the two main concerns when using electrosurgical tissue joining tools. A more robust method for quality control is still needed. In this study, we developed an experimental setup to join tissues and performed tensile tests to evaluate the quality of the tissue joint, while also monitoring the process parameters including voltage, current, impedance, temperature and thermal dose. Three joining times (4, 6, and 8 seconds) and three compression levels (80%, 90%, and 95%) were used to join porcine arterial tissues. It was found that 95% compression can form a strong joint with a shorter joining time and less energy, but the joint strength decreases when the joining time is extended to 8 seconds. A lower compression level can still form a quality joint but requires longer joining time and energy which could lead to more thermal damages. A new index, specific strength (mmHg/J), which is defined as the ratio between tensile strength and the consumed energy, is proposed. Specific strength offers a new way to estimate the required joining time to achieve sufficient joining strength while minimizing the energy consumption to reduce thermal damages.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5611
Author(s):  
In-Kyu Lee ◽  
Sung-Yun Lee ◽  
Sang-Kon Lee ◽  
Myeong-Sik Jeong ◽  
Bong-Joon Kim ◽  
...  

Recently, mechanical joining processes have received much attention for joining multi-materials. In particular, these processes have a great demand in the automobile industry for weight reduction. The press-fitting process is a representative mechanical joining process. In this process, the shape of the interfacial serration on the joining plane is very important because it has a significant effect on the joining strength. In this study, the characteristics of the aluminum–steel press joining process were investigated according to the shape of the interfacial serration of the joining plane. The deformation of the material and the forming load were investigated by conducting finite element analysis. In addition, the unfilled height of the material, joining force, and torque were measured experimentally.


2019 ◽  
Vol 8 (1) ◽  
pp. 75-83
Author(s):  
Liane Roldo ◽  
Nenad Vulić

Friction stir welding is a multipurpose solid-state joining process mainly used for aluminium and steel plates and frames. Friction stir welded non-ferrous metallic alloys, similar or dissimilar, in particular aluminium alloys, provide opportunities for the improvement and developement of new product designs. This paper investigates the correlation between the mechanical behaviour and morphological structures of friction stir welded Al-Mg-Si(Cu) alloy plates in two temper conditions. Micro Vickers hardness and tensile tests were carried out. Additionally, morphology was investigated using optical microscopy and scanning electron microscopy. Samples subjected to the post weld heat treatment were shown to have the best properties owing to the formation of a significant number of hardening particles which, added to the nugget grain refinement, resulted in the increase of the material strength.


Author(s):  
S. Wituschek ◽  
F. Kappe ◽  
M. Lechner

AbstractThe increasing demands for the reduction of carbon dioxide emission require intensified efforts to increase resource efficiency. Especially in the mobility sector with large moving masses, resource savings can contribute enormously to the reduction of emissions. One possibility is to reduce the weight of the vehicles by using lightweight technologies. A frequently used method is the implementation of multi-material systems. These consist of dissimilar materials such as steel, aluminium or plastics. In the production of these systems, the joining of the different materials and geometries is a central challenge. Due to the increasing demands on the joints, the challenges for the joining processes itself are also increasing. Since conventional joining processes are rather rigid and can only react to a limited extent to disturbance variables or changing process variables, new methods and technologies are required. A widely used conventional joining method with these properties is self-piercing riveting. Because of the rigid tool combination and the fact that the rivet geometry that can be used is related to the tools, the joining of multi-material systems requires tool and rivet changes during the process. In order to extend the process window of joining with self-piercing rivet elements, the process is enhanced with a tumbling kinematic of the punch. The integration of tumbling results in a significant increase in the adjustable process parameters. This enables a higher material flow control in the joining process through a specific tumbling strategy. The materials investigated are a steel and an aluminium alloy, which differ significantly in their mechanical properties and have many applications in automotive engineering, especially for structural car body components. The steel material is a galvanized HCT590X+Z dual-phase steel, which is characterised by a low yield strength, combined with high tensile strength and a good hardening behaviour. The aluminium alloy is an EN AW-6014. The precipitation-hardening alloy consists of aluminium, magnesium and silicon with a high strength and energy absorption capability. The objective of this work is to obtain a fundamental knowledge of the new tumbling self-piercing riveting process. With different mechanical properties and different sheet thicknesses of the joining partners, the influences of these parameters on the tumbling strategy of the riveting process are analysed. Such a tumbling strategy is based on the tumbling angle, the tumbling onset and the tumbling kinematics. These parameters are investigated in the context of the work for selected combinations of multi-material systems consisting of HCT590X+Z and EN AW-6014. With the variation of the parameters, the versatility of the process can be investigated and influences of the tumbling on the self-piercing riveting process can be identified. To illustrate the results, force–displacement curves from the joining process of the individual joints are compared and the geometry of the rivet undercut and rivet heads are geometrically measured. Furthermore, micrographs allow the analysis of the characteristic joint parameters interlock, residual sheet thickness and end position of the rivet head.


Author(s):  
Che-Hao Yang ◽  
Wei Li ◽  
Roland K. Chen

Electrosurgical tissue joining is an effective way to create hemostasis, especially in surgical procedures performed in the minimally invasive manner. The quality of tissue joints and potential thermal damages to the surroundings are the two main concerns when using electrosurgical tissue joining tools. A more robust method for quality control is still needed. The goal of this study is to characterize the joining process using dynamic impedance and energy efficiency. Three joining times (4, 6, and 8 s) and three compression levels (80%, 90%, and 95%) were used to join porcine arterial tissues while the process parameters including voltage, current, and impedance were monitored. Tensile tests were performed to evaluate the quality of tissue joints. A new index, the strength-energy coefficient (mmHg/J), which is defined as the tensile strength divided by the consumed energy, is introduced to evaluate the energy efficiency of the joining process. Strength-energy coefficient offers a new way to estimate the required joining time to achieve sufficient joining strength while minimizing the energy consumption to reduce thermal damages. The 95% compression level has the highest strength-energy coefficient for 4- and 6-s joining times. This indicates that the 95% compression level has higher energy efficiency and can form a good tissue joint with less energy and time in comparison with those required by a lower compression level. The progression of the tissue joining process was characterized by the real-time impedance measurement, which can be used as a tool for quality control.


Author(s):  
N. Merk ◽  
A. P. Tomsia ◽  
G. Thomas

A recent development of new ceramic materials for structural applications involves the joining of ceramic compounds to metals. Due to the wetting problem, an interlayer material (brazing alloy) is generally used to achieve the bonding. The nature of the interfaces between such dissimilar materials is the subject of intensive studies and is of utmost importance to obtain a controlled microstructure at the discontinuities to satisfy the demanding properties for engineering applications . The brazing alloy is generally ductile and hence, does not readily fracture. It must also wett the ceramic with similar thermal expansion coefficient to avoid large stresses at joints. In the present work we study mullite-molybdenum composites using a brazing alloy for the weldment.A scanning electron micrograph from the cross section of the joining sequence studied here is presented in Fig. 1.


2011 ◽  
Vol 465 ◽  
pp. 459-462 ◽  
Author(s):  
Lin Wang ◽  
Luen Chow Chan ◽  
Ting Fai Kong

The microstrctural evolution pre and post heat treatment is critical to achieve a successful product for metal forming process. This paper aims to investigate the microstructual effect of the magnesium alloy tubes undergone various heat treatment conditions to achieve material homogenization. The heat treatment conditions under various periods of time (1, 2, 6, 12 and 30 hours) at 400 °C were employed to investigate the microstructural effect on hydroforming magnesium tubes. The greatly reduced impurity embedded in grain boundaries and more uniform grain sizes do indicate the improvement of material strength and ductility. To validate the conclusion, corresponding tensile tests at the different temperatures (20 °C and 200 °C) were carried out. The increased engineering strain in two directions (hoop and longitudinal) implies that the microstructural evolution is unquestionably useful to enhance the ductility of the magnesium tubes. Subsequently, the tubes after optimal heat treatment condition at 400 °C for 6 hours were used to further carry out the thermal hydroforming process for validation. The defect-free hydroformed tubes were produced under the same working condition, which is unable to be achieved for tubes without the heat-treatment process.


2021 ◽  
Vol 883 ◽  
pp. 159-166
Author(s):  
Emad Scharifi ◽  
Moritz Roscher ◽  
Steffen Lotz ◽  
Ursula Weidig ◽  
Eric Jägle ◽  
...  

Inspired by steel forming strategies, this study focuses on the effect of differential cooling on mechanical properties and precipitation kinetics during hot stamping of high strength AA7075 alloy. For this aim, different forming strategies were performed using segmented and differentially heated forming tools to provide locally tailored microstructures. Upon processing, uniaxial tensile tests and hardness measurements were used to characterize the mechanical properties after the aging treatment. Microstructure investigations were conducted to examine the strengthening mechanisms using the electron channeling contrast imaging (ECCI) technique in a scanning electron microscope (SEM). Based on the obtained results, it can be deduced that the tool temperatures play a key role in influencing the mechanical properties. Lower tool temperatures result in higher material strength and higher tool temperatures in lower mechanical properties. By changing the cooling rate with the use of differently heated forming tools, the mechanical properties can be controlled. Microstructure investigations revealed the formation of very fine and homogeneously distributed particles at cooled zones, which were associated with elevated mechanical properties due to the suppression of second phase particle formation during cooling. In contrast, coarse particles were observed at lower cooling rates, explaining the lower material strength found in these zones.


Author(s):  
Mohammad Mehdi Kasaei ◽  
Lucas FM da Silva

This research work presents a new joining process based on the hemming process for attaching sheets made from dissimilar materials with very different mechanical properties. The process is termed ‘hole hemming’ and consists in producing a mechanical interlock between pre-drilled holes which can be made anywhere on the sheets. The process is carried out in a two-stage operation including flanging the hole of an outer sheet and bending the flange over the hole of an inner sheet. First, the joining stages and the required tools are designed. Then, the joining of DP780 steel and AA6061-T6 aluminium alloy sheets, which are applied to manufacture lightweight structures in the automotive industries, is investigated using finite element analysis. Results show that the hole hemming process is able to successfully join these materials without fracture. The hole-hemmed joint withstood the maximum forces of 2.5 and 0.5 kN in single-lap shear and peel tests, respectively, and failed with hole bearing mode which is known as a gradual failure mode. The results demonstrate the applicability of the hole hemming process for joining dissimilar materials.


Sign in / Sign up

Export Citation Format

Share Document