Finite Element Analysis for Static Cushion Performance of (EPE) and Honeycomb Paperboard Combination

2018 ◽  
Vol 777 ◽  
pp. 457-461
Author(s):  
Ya Jun Wang ◽  
Xiao Ping Fan ◽  
Hong Xiang ◽  
Fang Ying Wu ◽  
Zhuo Jiang

The solid modeling method for Expandable Polyethylene (EPE) and honeycomb paperboard combination structure was studied. The static compression of the structure was simulated by finite element method (FEM). The effect of the thickness of the EPE on the structure was analyzed, and the stress distribution and deformation characteristics were obtained. The results showed that the thickness of EPE had no significant effect on the yield stress of the structure, but the corresponding strain was increased with the increase of the thickness of EPE. The EPE could protect honeycomb paperboard from damage. The results of finite element analysis were in good agreement with the experimental results.

1998 ◽  
Vol 26 (2) ◽  
pp. 109-119 ◽  
Author(s):  
M. Koishi ◽  
K. Kabe ◽  
M. Shiratori

Abstract The finite element method has been used widely in tire engineering. Most tire simulations using the finite element method are static analyses, because tires are very complex nonlinear structures. Recently, transient phenomena have been studied with explicit finite element analysis codes. In this paper, the authors demonstrate the feasibility of tire cornering simulation using an explicit finite element code, PAM-SHOCK. First, we propose the cornering simulation using the explicit finite element analysis code. To demonstrate the efficiency of the proposed simulation, computed cornering forces for a 175SR14 tire are compared with experimental results from an MTS Flat-Trac Tire Test System. The computed cornering forces agree well with experimental results. After that, parametric studies are conducted by using the proposed simulation.


2011 ◽  
Vol 287-290 ◽  
pp. 603-607
Author(s):  
Chun Lin Xia ◽  
Yang Fang Wu ◽  
Qian Qian Lu

Using domestic MFSP membrane as a medium of energy conversion, a kind of MFSP actuator was designed. The dedicated test equipment was constructed for experimental research, and the experimental results were given. The strip and circular MSFP membrane were analyzed qualitatively to obtain the deformation characteristics of membrane by finite element analysis software.


1980 ◽  
Vol 47 (2) ◽  
pp. 377-382 ◽  
Author(s):  
K. Miya ◽  
T. Takagi ◽  
Y. Ando

Some corrections have been made hitherto to explain the great discrepancy between experimental and theoretical values of the magnetoelastic buckling field of a ferromagnetic beam plate. To solve this problem, the finite-element method was applied. A magnetic field and buckling equations of the ferromagnetic beam plate finite in size were solved numerically assuming that the magnetic torque is proportional to the rotation of the plate and by using a disturbed magnetic torque deduced by Moon. Numerical and experimental results agree well with each other within 25 percent.


2018 ◽  
Vol 32 (19) ◽  
pp. 1840043
Author(s):  
J. O. Yu ◽  
Y. H. Kim ◽  
Nagamachi Takuo

To eliminate the complexity of curvature extrusion process, a new extrusion method was proposed. In this study, a finite element analysis for curvature extrusion was studied to commercialize this extrusion method that creates curvature in a tilting method. When simulating an extrusion process, it is important to fix the appropriate friction coefficient and fillet value to avoid peel-out problems such that the finite element disappears. Therefore, the actual extrusion results and the simulated results were compared to find conditions that the element would not disappear. There was a good agreement between the simulation and experimental results when the coefficient friction was 0.4 and the fillet was 0.4 mm.


2014 ◽  
Vol 945-949 ◽  
pp. 190-193
Author(s):  
Hai Lin Wang ◽  
Yi Hua Sun ◽  
Ming Bo Li ◽  
Gao Lin ◽  
Yun Qi Feng ◽  
...  

Q43Y-85D type crocodile hydraulic clipping machine was taken as research object to optimization design. A finite element model for clipping machine was built using shell unit as fundamental unit. ANSYS12.0 finite element method was used to analyze the deformation and stress distribution of the shear platform model of hydraulic clipping machine. The result showed that the maximum equivalent stress at the dangerous area was 368.162 MPa and the maximum elastic strain was 0.1814×10-2 mm. After the structural optimization design, it was found that the maximum equivalent stress decreased to 186.238 MPa which did not exceed the material’s yield limitation 215 MPa and the maximum elastic strain decreased to 0.919×10-3 mm which satisfied the requirement of stiffness.


1994 ◽  
Vol 116 (2) ◽  
pp. 250-254 ◽  
Author(s):  
Sung Ho Lee ◽  
Dong Nyung Lee

The electromagnetic field and dynamic deformation analyses for tube expansion by electromagnetic forming were performed by the finite element method. A realistic pressure distribution was calculated by taking into account both coil and workpiece. The calculated values of displacement along the tube axis and with time were in very good agreement with the measured ones.


2021 ◽  
Vol 25 (Special) ◽  
pp. 1-115-1-220
Author(s):  
Adnan J. Kazem ◽  
◽  
Amer M. Ali ◽  

Shaded pole induction motor is one of the simplest and least expensive types of single-phase motors, but one of the most difficult to analyze. In this paper, we adopted a two-dimensional finite element method 2DFEM, which is one of the most accurate methods to analyze such motors. We used Ansys Maxwell2D software with assist of AutoCAD software in modeling and analyzing a reluctance-augmented shaded pole motor. The 2DFEM results of torques and currents for this motor obtained from Maxwell2D were compared with the analytical results and appeared a good agreement.


Author(s):  
Kazuhiro Oda ◽  
Noriko Tsutsumi ◽  
Kohei Morita ◽  
Takahiro Tsutsumi ◽  
Hou Zhong

In this study, the indentation hardness test is performed by elastic-plastic finite element (FE) analysis. In order to investigate the effect of the wear of indenter tip on the load-penetration depth curve ([Formula: see text] curve), indentation simulation is made by changing the indenter tip radius. The [Formula: see text] curve obtained by finite element method (FEM) is in good agreement with the experimental results. The calculation shows that the indentation plastic work [Formula: see text] corresponding to the area in the [Formula: see text] curve is hardly affected by the indenter tip radius.


2014 ◽  
Vol 915-916 ◽  
pp. 142-145 ◽  
Author(s):  
Qing Qian Zheng ◽  
Bin Yang ◽  
Hui Min Yang ◽  
Min Hu

The 3D Finite Element Method (FEM) model of engine connecting rod was established in this paper. And, nonlinear analysis of engine connecting rod was made, Stress distribution of the connecting rod under condition of maximum stretching and maximum compressing was simulated. The result shows that the results coincide with the actual results and connecting rod can satisfy the strength requirement, the method turns out to be very effective in practice.


1993 ◽  
Vol 20 (2) ◽  
pp. 269-286 ◽  
Author(s):  
D. I. Nwosu ◽  
A. S. J. Swamidas ◽  
K. Munaswamy

The stress distribution along the intersection of offshore tubular T-joints under the action of axial and in-plane and out-of-plane (bending) brace loading has been investigated using degenerated shell elements. The ratios of through-thickness membrane to bending stress and bending to total stress have been obtained using a simple linear interpolation between the stresses on the inner and outer surfaces of the tube. The nominal brace stress and the maximum principal stress values have been used for stress concentration factor determination. The influence of thickness and other geometric parameters on the stress distribution along the intersection was investigated in two ways, viz., increasing the chord thickness while maintaining a constant brace thickness, and keeping the chord thickness constant while reducing the brace thickness.Comparison of the shell finite-element results obtained in this study with the semiloof thin-shell finite-element results of the University College, London (UCL), exhibits good agreement. Good agreement exists between the results of this study and the UCL parametric equations for the chord and the brace of the joint, with a maximum difference of about 7% on the braceside around the saddle position. Comparisons between the finite-element results and other known parametric equations for stress concentration factor with different diametral, wall thickness, and chord thickness and ratios also show good agreement. A comparison of the results obtained from the finite-element analysis and the experimental results of the Canadian Cooperative Fatigue Studies Program, carried out at Memorial University of Newfoundland and University of Waterloo, is also made. Key words: stress distribution, finite-element analysis, stress concentration factors, membrane stress, bending stress, tubular T-joints.


Sign in / Sign up

Export Citation Format

Share Document