Technological Features of the Thick Tin Film Deposition by with Magnetron Sputtering Form Liquid-Phase Target

2018 ◽  
Vol 781 ◽  
pp. 8-13 ◽  
Author(s):  
Mariya Makarova ◽  
Konstantin Moiseev ◽  
Alexander Nazarenko ◽  
Petr Luchnikov ◽  
Galina Dalskaya ◽  
...  

Technological features of obtaining of tin films in a vacuum by liquid-phase target magnetron sputtering were reviewed. With high deposition rate the white color tin coating with amorphous structure is formed on the substrate. X-ray microanalysis of the obtained tin films showed the presence of micro-and nanoparticles of an impurity of the crucible material in the structure of the films. The use of the tantalum crucible with liquid-phase target magnetron sputtering with deposition rate of 3.2 μm / min allows obtaining ultra-pure, continuous, homogeneous tin film on a stationary substrate without impurity material of the crucible.

2009 ◽  
Vol 1156 ◽  
Author(s):  
Fridrik Magnus ◽  
Arni Sigurdur Ingason ◽  
Sveinn Olafsson ◽  
Jon Tomas Gudmundsson

AbstractUltrathin TiN films were grown by reactive dc magnetron sputtering on amorphous SiO2 substrates and single-crystalline MgO substrates at 600°C. The resistance of the films was monitored in-situ during growth to determine the coalescence and continuity thicknesses. TiN films grown on SiO2 are polycrystalline and have coalescence and continuity thicknesses of 8 Å and 19 Å, respectively. TiN films grow epitaxially on the MgO substrates and the coalescence thickness is 2 Å and the thickness where the film becomes continuous cannot be resolved from the coalescence thickness. X-ray reflection measurements indicate a significantly higher density and lower roughness of the epitaxial TiN films.


2016 ◽  
Vol 293 ◽  
pp. 10-15 ◽  
Author(s):  
Priya Raman ◽  
Ivan Shchelkanov ◽  
Jake McLain ◽  
Matthew Cheng ◽  
David Ruzic ◽  
...  

2011 ◽  
Vol 314-316 ◽  
pp. 53-57 ◽  
Author(s):  
Xiang Rong Zhu ◽  
Nai Ci Bing ◽  
Zhong Ling Wei ◽  
Qiu Rong Chen

TiN films were deposited on the AZ 31 magnesium alloy substrates by d.c. magnetron sputtering technique. The surface properties of the films were investigated. The scanning electronic microscope observations reveal the dense structure characteristics of as-deposited TiN films. Under 200°C heat treatment for 30 minutes or 4 times’ heat cycles at 85°C for one hour, no structural defects such as cracks are observed on the surface of the films. Adhesion experiment further demonstrates the stability of the film and the strong combination between the film and the substrate. Nano-indentation experiment shows that the average micro-hardness of TiN film reaches 23.85 Gpa. Finally, the corrosion experiments in simulated body fluid initially reveal the degradation property of TiN film.


2002 ◽  
Vol 16 (01n02) ◽  
pp. 254-260 ◽  
Author(s):  
MARVIN CHAN ◽  
S. XU ◽  
N. JIANG ◽  
J. LONG ◽  
C. H. DIONG

Non-linear effects on Ti emission during TiN synthesis in an inductively coupled plasma assisted DC magnetron sputtering system have been investigated. TiN films are deposited on stainless steel 304 substrates, using N 2 + Ar mixture in the absence and presence of RF current variation. In-situ measurements of the optical emission collected during the deposition processes indicate differences in the intensities of the Ti species involved. Film characterizations indicate that such plasma non-linearity plays a pivotal role in the eventual film properties. Highly orientated (111) TiN films deposited under the same RF power were found to correspond to two different hardness values, one being 2240Hv and is 40% harder than the other.


2016 ◽  
Vol 120 (16) ◽  
pp. 163301 ◽  
Author(s):  
Priya Raman ◽  
Justin Weberski ◽  
Matthew Cheng ◽  
Ivan Shchelkanov ◽  
David N. Ruzic

2010 ◽  
Vol 93-94 ◽  
pp. 578-582
Author(s):  
A. Pankiew ◽  
Win Bunjongpru ◽  
N. Somwang ◽  
S. Porntheeraphat ◽  
Sirapat Pratontep ◽  
...  

Titanium nitride (TiN) film has been widely used as a diffusion barrier layer for VLSI contact metallization because TiN is an excellent barrier against inter-diffusion between Al and Si substrate or silicide. In this work, we studied the properties of TiN films deposited by DC magnetron sputtering with varying N2:Ar flow rate ratio in order to optimize growth conditions and film properties provided for Al diffusion barrier purpose. The TiN films were deposited at the constant pressure level and sputtering time. The crystalline orientation, composition and electrical properties of deposited TiN films were characterized by XRD, AES-depth profile and Four Point Probe measurement, respectively. The XRD results show that the deposited TiN film has two preferred orientations of TiN(111) and TiN(200) planes. The highest intensity of the TiN(111) plane was obtained when the N2:Ar flow rate ratio was 3:1. The electrical resistivity was increased when the N2:Ar flow rate ratio was decreased. The minimum electrical resistivity is 127.8 μΩ-cm when the N2:Ar flow rate ratio is 3:1.


2014 ◽  
Vol 687-691 ◽  
pp. 4323-4326 ◽  
Author(s):  
Xiang Min Xu ◽  
Hao Zhang ◽  
Fei Fei Luo ◽  
Zi Hao Zhou ◽  
Shu Wang Duo

CrSiN coatings of different silicon content were deposited on 1Cr18Ni9Ti austenitic stainless by d.c. reactive magnetron sputtering in a closed field unbalanced system. Comparative studies on microstructure and mechanical properties between CrN and CrSiN coatings with various Si contents were carried out. The structure of the CrSiN coatings was found to change from crystalline to amorphous structure as the Si contents increased. Amorphous phase of Si3N4 compound was suggested to exist in the CrSiN coatings. The crystalline grain became smaller in CrSiN coatings. With the increasing Si content, the coating deposition rate slew down, while the hardness of coatings improved obviously and the best hardness was about 4200 HV0.01 when the Si content was 1.13%.


2014 ◽  
Vol 941-944 ◽  
pp. 1306-1310
Author(s):  
Sheng Chien Su ◽  
Wen Chung Chang ◽  
Chia Ching Wu

Ferroelectric SrxBa1−xNb2O6 (SBN) thin films are deposited on Al/Si (100) substrates by radio frequency magnetron sputtering at room temperature. The nanograin sizes of the SBN thin films were analized by scanning electron microscopy (SEM). X-ray diffraction reveals that all the SBN thin films show an amorphous structure because they were deposited at room temperature.The capacitive properties of the SBN thin films were measured using metal ferroelectric insulation semiconductor (MFIS) structures. The memory window of the MFIS structure was characterized with a capacitance-voltage (C-V) method.


2012 ◽  
Vol 581-582 ◽  
pp. 540-543
Author(s):  
Jin Long Jiang ◽  
Di Chen ◽  
Wei Jun Zhu

Quaternary Ti-Si-C-N films were deposited Si wafer by middle frequency magnetron sputtering Ti80Si20 twin-targets in mixture atmosphere of Ar, CH4 and N2. Scanning electron microscopy (SEM) and x-ray diffraction (XRD) results indicate that the films present an amorphous structure with no columnar structure. These films are quite uniform and dense without large particles. The film deposited at 10 sccm CH4 and 10 sccm N2 flow rates exhibits a maximum hardness of 18.9 GPa and high elastic recovery of 97%.


Sign in / Sign up

Export Citation Format

Share Document