A Study on Determination of Optimum Parameters for Lubrication in External Cylindrical Grinding Base on Taguchi Method

2019 ◽  
Vol 796 ◽  
pp. 97-102 ◽  
Author(s):  
Hoang Xuan Tu ◽  
Vu Ngoc Pi ◽  
Gong Jun

This paper presents a study on determining optimum parameters for lubrication in external grinding process. In the study, experiments were designed by using Taguchi technique. The experiments were set up with Oemeta Unimet AS 192 lubricant, Al2O3 grinding wheel and the workpiece material of tool steel 9CrSi. From the results of the experiments, the influences of coolant parameters on the surface roughness were analyzed. It was found that the concentration of lubricant was the most impact, the second is flow rate and the coolant pressure has little impact on the surface roughness. Also, the optimum parameters of lubrication for getting minimum surface roughness were proposed.

Author(s):  
Do Duc Trung ◽  
Nhu-Tung Nguyen ◽  
Dung Hoang Tien ◽  
Ha Le Dang

In this study, the mutil-objective optimization was applied for the surface grinding process of SAE420 steel. The aluminum oxide grinding wheels that were grooved by 15 grooves, 18 grooves, and 20 grooves were used in the experimental process. The Taguchi method was applied to design the experimental matrix. Four input parameters that were chosen for each experiment were the number of grooves in cylinder surface of grinding wheel, workpiece velocity, feed rate, and cutting depth. Four output parameters that were measured for each experimental were the machining surface roughness, the system vibrations in the three directions (X, Y, Z). The DEAR technique was applied to determine the values of the input parameters to obtaine the minimum values of machining surface roughness and vibrations in three directions. By using this technique, the optimum values of grinding wheel groove number, workpiece velocity, feed-rate, cutting depth were 18 grooves, 15 m/min, 2 mm/stroke, and 0.005 mm, respectively. The verified experimental was performed by using the optimum values of input parameters. The validation results of surface roughness and vibrations in X, Y, Z directions were 0.826 (µm), 0.531 (µm), 0.549 (µm), and 0. 646 (µm), respectively. These results were great improved in comparing to the normal experimental results. Taguchi method and DEAR technique can be applied to improve the quality of grinding surface and reduce the vibrations of the technology system to restrain the increasing of the cutting forces in the grinding process. Finally, the research direction was also proposed in this study


2008 ◽  
Vol 389-390 ◽  
pp. 326-331 ◽  
Author(s):  
Shinichi Ninomiya ◽  
Fan Qiang ◽  
Toshiharu Shimizu ◽  
Manabu Iwai ◽  
Tetsutaro Uematsu ◽  
...  

In order to apply the floating nozzle method to an angular grinding on the external cylindrical grinding, basic experiments on V-groove grinding with the wheel edge were performed on the surface-grinding machine. The results showed that the floating nozzle method could maintain a good control of the wheel edge wear, leading to improved surface roughness compared with a conventional nozzle.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2016 ◽  
Vol 689 ◽  
pp. 7-11 ◽  
Author(s):  
Y. Şahin ◽  
Senai Yalcinkaya

The selection of optimum machining parameters plays a significant role for the quality characteristics of products and its costs for grinding. This study describes the optimization of the grinding process for an optimal parametric combination to yield a surface roughness using the Taguchi method. An orthogonal array and analysis of variance are employed to investigate the effects of cutting environment (A), depth of cut (B) and feed rate (C) on the surface roughness characteristics of mold steels. Confirmation experiments were conducted to verify the optimal testing parameters. The experimental results indicated that the surface finish decreased with cutting-fluid and depth of cut, but decreased with increasing feed rate. It is revealed that the cutting fluid environment had highest physical as well as statistical influence on the surface roughness (71.38%), followed by depth of cut (25.54%), but the least effect was exhibited by feed rate (1.62%).


Author(s):  
Prosun Mandal

This chapter aims to optimize centreless grinding conditions using the Taguchi method for minimizing surface roughness. The grinding operation has been performed according to the L9 orthogonal array in a centreless grinding process. The centreless grinding experiments are carried out on the crane-hook pin of C40 steel. The analysis of variance (ANOVA) and computation of signal to noise (S/N) ratio are adopted to determine the influence of grinding parameters (depth of cut [µm], regulating wheel speed [rpm], and coolant valve opening) on surface roughness. The depth of cut (µm) is found to be the most significant among the grinding parameters on the surface roughness. The signal to noise (S/N) ratio was calculated based on smaller the best criteria. The lower level of depth of cut, medium level of regulating wheel speed, and higher-level coolant valve opening is found to be optimal grinding condition according to the mean response and signal to noise (S/N) ratio.


2020 ◽  
Vol 34 (22n24) ◽  
pp. 2040150 ◽  
Author(s):  
Tuan-Linh Nguyen ◽  
Nhu-Tung Nguyen ◽  
Long Hoang

The vibration during external cylindrical grinding is caused by many factors such as the rigidity of the technology system, machining modes, machining materials, cooling mode, etc. This paper employed a Taguchi method to design experiments and evaluate the influence of machining mode parameters and workpiece material hardness on the vibrations when machining some types of alloy steel in external cylindrical grinding process. The influence of machining conditions on the vibrations was investigated. Besides, the mathematical models of vibration amplitudes were also modeled. The achieved results can be used to control the vibrations through machining conditions to improve the surface quality of the product.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2288
Author(s):  
Roberto Spina ◽  
Bruno Cavalcante

This paper investigates the grinding process on unreinforced (PA66) and reinforced glass-fiber polyamide 6,6 (PA66 GF30) with Al2O3 and SiC abrasive wheels. Both materials were ground by varying rotations, workpiece infeed speed, depth of cuts for sequential roughing/finishing steps. Dry and liquid coolant conditions were also considered during the grinding process to evaluate the effects on part quality. The surface roughness was used to assess the quality of the final products with several parameter combinations, identifying the induced process trends. The results show that at the end of the finishing step, the surface roughness Rz was lower than 4 μm, attaining the lowest value of 1.34 μm for PA66 specimens. The analysis also suggested the choice of the Al2O3 grinding wheel to reach the lowest Rz values for both materials.


2014 ◽  
Vol 575 ◽  
pp. 121-127
Author(s):  
Shinn Liang Chang ◽  
Dai Jia Juan ◽  
Bean Yin Lee ◽  
You Jhih Lin

Grinding technology is used in this study to overcome the hard machining of ceramic with hard and brittle characteristics. The grinding machine with diamond grain size 25 and 5 , spindles speed 1720 rpm and 3450 rpm are applied. Combining the unintentional roll clamp and the grinding machine, ceramic rods can be ground to the desired size.In the research, surface profilometer is applied to measure the rod surface roughness of processing results under different conditions. The results show that the grinding wheel with finer particle, the roughness of the ground ceramic rod will be better. While the rotation speed of grinding wheel is increased, the surface roughness will have the same trend.


2016 ◽  
Vol 874 ◽  
pp. 395-400
Author(s):  
Jumpei Kusuyama ◽  
Takayuki Kitajima ◽  
Akinori Yui ◽  
Toshihiro Ito

For the backgrinding of semiconductor devices, a rotary grinding process is indispensable for achieving the required wafer thickness. The relative velocity between the grinding wheel and the wafer is maximum at the periphery of the wafer and minimum at the center of wafer. Generally, the grinding performances are discussed in terms of the ratio of the rotational speeds of the grinding wheel and the wafer. However, it is not possible to use this ratio to determine the grinding conditions for different wafer sizes grinding as this ratio does not show the difference in relative velocity. Therefore, a new relative velocity ratio was defined in this study. Then, the Si wafer grinding was performed to investigate the effect of the surface roughness and the power consumption of the grinding wheel spindle on the relative velocity ratio.


2022 ◽  
Vol 16 (1) ◽  
pp. 12-20
Author(s):  
Gen Uchida ◽  
Takazo Yamada ◽  
Kouichi Ichihara ◽  
Makoto Harada ◽  
Tatsuya Kohara ◽  
...  

In the grinding process, the grinding wheel surface condition changes depending on the dressing conditions, which affects the ground surface roughness and grinding resistance. Several studies have been reported on the practical application of dressing using prismatic dressers in recent years. However, only a few studies that quantitatively evaluate the effects of differences in dressing conditions using prismatic dresser on the ground surface roughness and grinding resistance have been reported. Thus, this study aims to evaluate quantitatively the effect of the difference in dressing conditions using the prismatic dresser on the ground surface roughness and grinding resistance by focusing on the dressing resistance. In the experiment, dressing is performed by changing the dressing lead and the depth of dressing cut with a prismatic dresser, and the ground surface roughness and grinding resistance are measured. Consequently, by increasing the dressing lead and the depth of dressing cut, the ground surface roughness increased, and the grinding resistance decreased. This phenomenon was caused by the increase in dressing resistance when the dressing lead and the depth of dressing cut were increased, which caused a change in the grinding wheel surface condition. Furthermore, the influence of the difference in dressing conditions using the prismatic dresser on the ground surface roughness and grinding resistance can be quantitatively evaluated by using the dressing resistance.


Sign in / Sign up

Export Citation Format

Share Document