The Effect of pH on Zinc Oxide Nanoparticles Characteristics Synthesized from Banana Peel Extract

2019 ◽  
Vol 797 ◽  
pp. 271-279 ◽  
Author(s):  
R.A. Abdol Aziz ◽  
Siti Fatma Abd Karim ◽  
Nor Asikin Rosli

In this study, Zinc Oxide (ZnO) Nanoparticles (NPs) were synthesized from banana peels (Jackfruit banana) extract (BPE) at different pH condition. The samples were then characterized to identify the optimum pH condition for producing ZnO NPs and at the same time determine the crystallite and particles size of ZnO. This paper covered a section of green chemistry since green application has become an attention nowadays. Slo-gel method is the method used to synthesize the ZnO NPS because the advantages in terms of eco-friendly, less time consumption, cost effective and easy to apply. BPE is one of raw material that has the ability to act as stabilizer and reducing agent. The samples were characterized using Fourier Transform Infrared Red (FTIR) Spectroscopy, UV-visible spectrometer (UV-Vis), X-ray diffraction (XRD) and Brunaner-Emmett-Teller (BET). It was found that the presence of ZnO were recorded from FTIR spectra at wavenumber 350-390 cm-1for all samples which indicating the presence of ZnO bond. The UV-Vis spectrometer was recorded to observe the absorption peak, the highest absorption peak at 367 nm and the band gap was 3.38 Ev at pH 12. XRD analysis showed the ZnO nanoparticles formed to have hexagonal wurtzite structure and the crystallite size between 16 to 23 nm and the smallest crystallite size was smallest at pH 12. BET analysis showed that the surface area of ZnO NPs between 15 to 53 m2/g and the average particles size of ZnO NPs between 20 to 66 nm. As a conclusion, ZnO NPs can be produced from BPE at optimum pH of 12.

RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110108-110111 ◽  
Author(s):  
Zhenghui Liu ◽  
Huifang Zhou ◽  
Jiefeng Liu ◽  
Xudong Yin ◽  
Yufeng Mao ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have been monitored in wastewater treatment plants as their potential adverse effects on functional microorganisms have been causing increasing concern.


2014 ◽  
Vol 1024 ◽  
pp. 83-86 ◽  
Author(s):  
Mohamad Sahban Alnarabiji ◽  
Noorhana Yahya ◽  
Sharifa Bee Abd Hamid ◽  
Khairun Azizi Azizli ◽  
Afza Shafie ◽  
...  

Synthesising zinc oxide nanoparticles to get certain specific characteristics to be applied in Enhanced oil recovery (EOR) is still challenging to date. In this work, zinc oxide (ZnO) nanoparticles were synthesised using the sol-gel method by dissolving zinc nitrate hexahydrate in nitric acid. The ZnO crystal and particles morphology and structure were determined using X-ray Diffractometer (XRD) and Field Emission Scanning Electron Microscope (FESEM). In this study, a microwave oven was used for annealing ZnO without insulating a sample in any casket. The results show that 30 and 40 minutes of annealing and stirring for 1 hour influenced the morphology and size of zinc oxide particles in nanoscale. These parameters could be tailored to generate a range of nanoparticle morphology (agglomerated nanoparticles in a corn-like morphology), a crystal size with the mean size of 70.5 and 74.9 nm and a main growth at the peak [10. EOR experiment were conducted by dispersing 0.10 wt% ZnO NPs in distilled water to form a ZnO nanofluid. Then the fluid was injected into the medium in the 3rd stage of the oil recovery to present EOR stage. It was found that ZnO nanofluid has the ability to extract 8% of the original oil in place (OOIP).


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1017
Author(s):  
Sarayut Pittarate ◽  
Julius Rajula ◽  
Afroja Rahman ◽  
Perumal Vivekanandhan ◽  
Malee Thungrabeab ◽  
...  

Fall armyworm Spodoptera frugiperda is a major pest of corn, rice, and sorghum among other crops usually controlled using synthetic or biological insecticides. Currently, the new invention of nanotechnology is taking root in the agricultural industry as an alternative source of pest management that is target-specific, safe, and efficient. This study sought to determine the efficacy of commercial Zinc Oxide (ZnO) nanoparticles (NPs) towards S. frugiperda under laboratory conditions. ZnO NPs were diluted into different concentrations (100–500 ppm), where the baby corn used to feed the S. frugiperda larvae was dipped. The development of the insect feeding on food dipped in ZnO solution was significantly (p < 0.05) affected, and the number of days that the insect took to complete its life cycle had a significant difference compared to the control. There was a significant difference in the adults’ emergence in all the concentrations of ZnO NPs compared to the control, with over 90% of the eggs successfully going through the life cycle until adult emergence. Additionally, several body malformations were observed throughout the lifecycle of the insect. Also, the fecundity of the females was greatly affected. The findings of this study suggest the possibility of exploitation of ZnO nanoparticles not only to manage S. frugiperda but to significantly reduce their population in the ecosystem through body deformations, reduced fecundity, reduced oviposition, and hatchability of eggs. It will be a valuable tool in integrated pest management regimens.


Author(s):  
Sarayut Pittarate ◽  
Julius Rajula ◽  
Afroja Rahman ◽  
Perumal Vivekanandhan ◽  
Malee Thungrabeab ◽  
...  

Fall armyworm Spodoptera frugiperda (J.E. Smith, 1797) is a major pest of corn, rice, and sorghum among other crops usually controlled using synthetic or biological insecticides. Currently, the new invention of nanotechnology is taking root in the agricultural industry as an alternative source of pest management that is target-specific, safe, and efficient. This study sought to determine the efficacy of commercial Zinc Oxide (ZnO) nanoparticles (NPs) towards S. frugiperda under labora-tory conditions. ZnO NPs were diluted into different concentrations (100- 500ppm), where the baby corn used to feed the S. frugiperda larvae was dipped. The development of the insect feeding on food dipped in ZnO solution was significantly (p&lt;0.05) affected, and the number of days that the insect took to complete its life cycle had a significant difference compared to the control. There was a significant difference in the adults&rsquo; emergence at all the concentrations of ZnO NPs compared to the control, with over 90% of the eggs successfully going through the cycle until adult emergence. Additionally, several malformations were observed throughout the lifecycle of the insect. Also, the fecundity of the females was greatly affected. The findings of this study suggest the possibility of exploitation of ZnO nanoparticles not only to eradicate S. frugiperda but to significantly reduce their population in the ecosystem through deformations, reduced fecundity, reduced oviposition, and hatchability of eggs. It will be a valuable tool in integrated pest management regimens.


2021 ◽  
Vol 6 (1) ◽  
pp. 44-51
Author(s):  
Manikandan Dhayalan ◽  
Malathi Selvaraj ◽  
Kumar B Karthick ◽  
Riyaz S.U. Mohammed ◽  
Mika Sillanpää

Abstract An attempt was made to synthesize zinc oxide gum white nanoparticles (ZnO-GWNPs) by the greenway approach using Aegle marmelos (Bael fruit) juice extract as a capping and reducing agent. Synthesis of ZnO-GWNPs by greener approach is safer, more economical, more energy-efficient, eco-friendlier, and less toxic than chemically synthesized counterparts. The optical properties of the ZnO-GWNPs were ascertained through UV-Vis spectroscopy, Fourier Transform-Infrared (FT-IR), X-ray diffraction (XRD), High-resolution transmittance electron microscopy (HRTEM). A characteristic absorption peak at 385nm confirmed the presence of ZnO-GWNP using UV-Vis spectroscopy. FTIR spectrum revealed that the characteristic absorption peak of the Zn-O bond was observed at 467 cm-1. The XRD result for the ZnO showed the tendency of the three most intense diffraction peaks. The average crystallite size ZnO NPs at scattering angle (2θ) 22.89 and 32.15 was 39.14 and 26.08 nm and it showed the presence of miller indices of (100), (002), (101), (102) respectively. The EDX spectrum gave strong signals for zinc and oxygen indicating the occurrence of the nanoparticles in their oxide form rather than the pure zinc form. The SEM image showed the surface morphology of ZnO-GW NPs and the HR-TEM image showed the crystalline nature of ZnO-GW NPs. Cytotoxicity study of ZnO-GW NPs was determined against MCF-7 cell lines and the IC50 values were found to be 40 µg/mL and 60 µg/mL at 24 h and 48 h respectively.


Entropy ◽  
2020 ◽  
Vol 22 (10) ◽  
pp. 1070 ◽  
Author(s):  
Lijun Zhang ◽  
Muhammad Mubashir Bhatti ◽  
Marin Marin ◽  
Khaled S. Mekheimer

The present analysis deals with the entropy analysis of the blood flow through an anisotropically tapered arteries under the suspension of magnetic Zinc-oxide (ZnO) nanoparticles (NPs). The Jeffrey fluid model is contemplated as blood that is electrically conducting and incompressible. The lubrication approach is used for the mathematical modeling. The second law of thermodynamics is used to examine the entropy generation. The exact solutions are obtained against velocity and temperature profile with the use of computational software. The results for Entropy, Velocity, Bejan number, temperature profile, and impedance profile are discussed by plotting the graphs. ZnO-NPs have promising applications in biomedical engineering due to its low toxicity, economically reliable, and excellent biocompatibility. ZnO-NPs also emerged in medicine i.e., antibacterial and anticancer activity, and also beneficial in antidiabetic treatment. The monitoring of the blood temperature in the case of the tapered artery has supreme importance in controlling the temperature of blood in the living environment. The presence of a magnetic field is advantageous to manage and control the blood motion at different temperatures. The present outcomes are enriched to give valuable information for the research scientists in the field biomedical science, who are looking to examine the blood flow with stenosis conditions and also beneficial in treating multiple diseases.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Sanodia Najoom ◽  
Fozia Fozia ◽  
Ijaz Ahmad ◽  
Abdul Wahab ◽  
Nisar Ahmad ◽  
...  

In the present study, zinc oxide (ZnO) nanoparticles were prepared using ZnCl2.2H2O as a precursor, via green route using leaf extract of Rhazya stricta as capping and reducing agent. The prepared ZnO nanoparticles were examined using UV-visible spectrophotometer (UV-Vis), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction spectrometer (XRD), and scanning electron microscope (SEM). The UV-Vis absorption spectrum at 355 nm showed an absorption peak, which indicates the formation of ZnO NPs. The FT-IR spectra analysis was performed to identify the potential biomolecule of the as-prepared ZnO NPs. The FT-IR spectra showed peaks at 3455, 1438, 883, and 671 cm−1 in the region of 4000–500 cm−1, which indicates –OH, NH, C-H, and M-O groups, respectively. The SEM images showed aggregation of ZnO nanoparticles with an average size of 70–90 nm. The XRD study indicated that the ZnO NPs were crystalline in nature with hexagonal wurtzite structure and broad peaks were observed at 2 theta positions 31.8°, 34.44°, 36.29°, 47.57°, 56.61°, 67.96°, and 69.07°. The synthesized ZnO NPs were found to be good antiplasmodial with a 50% inhibitory concentration (IC50) value of 3.41 μg/mL. It is concluded from the current study that the ZnO NPs exhibited noble antiplasmodial activity, and for the improvement of antiplasmodial medications, it might be used after further in vivo studies.


2019 ◽  
Vol 11 (2) ◽  
pp. 119 ◽  
Author(s):  
Aisha Shamim ◽  
Tariq Mahmood ◽  
Monis Bin Abid

Nanoparticles are ultrafine structures with dimensions less than 100 nm. Nanoparticles have diverse applications. There are three important methods of fabrication of nanoparticles namely physical, chemical and biological methods. Physical method is a top down strategy for the fabrication of nanoparticles. It is energy intensive and time consuming. A chemical method is simple, but is expensive and requires expensive chemicals with high purity and also involves hazards of contaminations. Biological synthesis is very simple, cheap and environment friendly, requiring no expensive chemicals, temperature and is time saving. Plants and microorganisms are commonly used in this method. These are available everywhere. In the present work we synthesized Zinc Oxide (ZnO) nanoparticles by biological method using Aspargillus niger and zinc chloride (ZnCl2) as precursors. Biogenic synthesis of metallic nanoparticles by fungi is a safe and economical process because of formation of stable and small sized nanoparticles. Fungal biomass secretes proteins which act as reducing and stabilizing agents. The synthesized nanoparticles were characterized by XRD (X-Ray Diffraction), SEM (Scanning Electron Microscopy), UV-Vis (Ultraviolet, Visible) and EDX (Energy Dispersive X-Ray) techniques. Their size was in nm range and morphology of synthesized ZnO NPs was hexagonal. The ZnO nanoparticles are one of the most versatile materials and are used in cosmetics and in Bioenergy production, as a catalyst and as antibacterial material.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Nattanan Panjaworayan T-Thienprasert ◽  
Jiraroj T-Thienprasert ◽  
Jittiporn Ruangtong ◽  
Thitiradsadakorn Jaithon ◽  
Pattana Srifah Huehne ◽  
...  

Fungicides have been extensively used to control fungal diseases that affect several crops including ornamental crops. However, concerns have arisen due to a development of fungicide resistance and increasing incidences of fungicide toxicity effects on nontarget organisms. As zinc oxide nanoparticles (ZnO NPs) have demonstrated effective antimicrobial activity, this study is therefore aimed at synthesizing ZnO NPs from banana peels using a green chemistry method in a large scale and determines their physical properties including their inhibitory effects against a plant pathogen fungus causing anthracnose in orchids, Colletotrichum sp. Results from X-ray diffraction and scanning electron microscope indicated that the synthesized ZnO NPs were obtained without other crystalline impurities, and they were spherical in shape with the average diameter of 256 ± 40   nm , respectively. The absorption peak was found to be centered at ~370 nm with the optical band gap value approximately 2.8 eV. Fourier transform infrared spectroscopy analysis confirmed the presence of several functional groups on synthesized ZnO NPs. The total amount of synthesized ZnO NPs was obtained about 170 g for a synthesis reaction. By performing the antifungal activity assay, high doses of green synthesized ZnO NPs significantly inhibited growth of isolated Colletotrichum sp. (KUFC 021) on culture plates. Under greenhouse conditions, high doses of synthesized ZnO NPs also significantly reduced anthracnose symptoms on inoculated orchid leaves with the Colletotrichum sp. (KUFC 021).


MRS Advances ◽  
2020 ◽  
Vol 5 (21-22) ◽  
pp. 1103-1112
Author(s):  
G.G. Welegergs ◽  
H.G. Gebretinsae ◽  
R. Akoba ◽  
N. Matinsie ◽  
Z. Y. Nuru ◽  
...  

AbstractBio-reduction agents are being explored to synthesised nanoparticles to minimize the effects of toxic chemicals. The present study was focused on green approach for the synthesis of zinc oxide nanoparticles using aqueous seeds extract of Papaver somniferum. The biosynthesised ZnO NPs (27.8nm) were characterized by using of spectroscopy and microscopy instruments. The surface morphology and the structural analysis confirms the formation of hexagonal nanostructure and a pure zincite nature of ZnO nanoparticles (NPs) respectively. The EDS spectrum confirms pure ZnO NPs were synthesised. From electrochemical properties, the CV indicates both anodic and cathodic sweep are quasi-reversible properties whose intensity increases with the scan rates. The bode plot shows the maximum angles of 74o which is an indication of a higher conductivity of ZnO NPs.


Sign in / Sign up

Export Citation Format

Share Document