Research on Efficiency Improvement of UPS Based on Silicon Carbide MOSFET

2020 ◽  
Vol 842 ◽  
pp. 257-261
Author(s):  
Peng Zhang ◽  
Xiu Ying Ren ◽  
Hong Da Zhang ◽  
De Wen Zhang ◽  
See Lan ◽  
...  

In order to avoid the loss caused by sudden power failure or loss, UPS is very necessary.As the core part of UPS, the efficiency of DC-DC converter improvement has been a long-term research direction in the industry.Switch tube loss are the main factors influencing the DCDC converter efficiency, SI power component is affected by its material, its performance is difficult to further improve, seriously affect the efficiency of the DC-DC converter, SiC semiconductor with high band gap width, the advantages of high heat conductivity and high electric breakdown strength in recent years become a hot research direction at home and abroad, and silicon carbide material improves the device the possibility of high frequency, miniaturization and efficiency.Compared with Si power devices, the advantages of SiC power devices are higher voltage and temperature resistance, higher operating frequency and lower switching losses.

2012 ◽  
Vol 717-720 ◽  
pp. 1147-1150
Author(s):  
Nii Adotei Parker-Allotey ◽  
Dean P. Hamilton ◽  
Olayiwola Alatise ◽  
Michael R. Jennings ◽  
Philip A. Mawby ◽  
...  

This paper will demonstrate how the newer Silicon Carbide material semiconductor power devices can contribute to carbon emissions reduction and the speed of adoption of electric vehicles, including hybrids, by enabling significant increases in the driving range. Two IGBT inverter leg modules of identical power rating have been manufactured and tested. One module has silicon-carbide (SiC) Schottky diodes as anti-parallel diodes and the other silicon PiN diodes. The power modules have been tested and demonstrate the superior electrothermal performance of the SiC Schottky diode over the Si PiN diode leading to a reduction in the power module switching losses.


2006 ◽  
Vol 527-529 ◽  
pp. 1445-1448 ◽  
Author(s):  
Jim Richmond ◽  
Sei Hyung Ryu ◽  
Sumi Krishnaswami ◽  
Anant K. Agarwal ◽  
John W. Palmour ◽  
...  

This paper reports on a 400 watt boost converter using a SiC BJT and a SiC MOSFET as the switch and a 6 Amp and a 50 Amp SiC Schottky diode as the output rectifier. The converter was operated at 100 kHz with an input voltage of 200 volts DC and an output voltage of 400 volts DC. The efficiency was tested with an output loaded from 50 watts to 400 watts at baseplate temperatures of 25°C, 100°C, 150°C and 200°C. The results show the converter in all cases capable of operating at temperatures beyond the range possible with silicon power devices. While the converter efficiency was excellent in all cases, the SiC MOSFET and 6 Amp Schottky diode had the highest efficiency. Since the losses in a boost converter are dominated by the switching losses and the switching losses of the SiC devices are unaffected by temperature, the efficiency of the converter was effectively unchanged as a function of temperature.


Philosophies ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 6
Author(s):  
Nadisha-Marie Aliman ◽  
Leon Kester ◽  
Roman Yampolskiy

In the last years, artificial intelligence (AI) safety gained international recognition in the light of heterogeneous safety-critical and ethical issues that risk overshadowing the broad beneficial impacts of AI. In this context, the implementation of AI observatory endeavors represents one key research direction. This paper motivates the need for an inherently transdisciplinary AI observatory approach integrating diverse retrospective and counterfactual views. We delineate aims and limitations while providing hands-on-advice utilizing concrete practical examples. Distinguishing between unintentionally and intentionally triggered AI risks with diverse socio-psycho-technological impacts, we exemplify a retrospective descriptive analysis followed by a retrospective counterfactual risk analysis. Building on these AI observatory tools, we present near-term transdisciplinary guidelines for AI safety. As further contribution, we discuss differentiated and tailored long-term directions through the lens of two disparate modern AI safety paradigms. For simplicity, we refer to these two different paradigms with the terms artificial stupidity (AS) and eternal creativity (EC) respectively. While both AS and EC acknowledge the need for a hybrid cognitive-affective approach to AI safety and overlap with regard to many short-term considerations, they differ fundamentally in the nature of multiple envisaged long-term solution patterns. By compiling relevant underlying contradistinctions, we aim to provide future-oriented incentives for constructive dialectics in practical and theoretical AI safety research.


2018 ◽  
Vol 924 ◽  
pp. 854-857
Author(s):  
Ming Hung Weng ◽  
Muhammad I. Idris ◽  
S. Wright ◽  
David T. Clark ◽  
R.A.R. Young ◽  
...  

A high-temperature silicon carbide power module using CMOS gate drive technology and discrete power devices is presented. The power module was aged at 200V and 300 °C for 3,000 hours in a long-term reliability test. After the initial increase, the variation in the rise time of the module is 27% (49.63ns@1,000h compared to 63.1ns@3,000h), whilst the fall time increases by 54.3% (62.92ns@1,000h compared to 97.1ns@3,000h). The unique assembly enables the integrated circuits of CMOS logic with passive circuit elements capable of operation at temperatures of 300°C and beyond.


1998 ◽  
Vol 1 (2) ◽  
pp. 81-85
Author(s):  
Clara EE Hanekamp ◽  
Hans JRM Bonnier ◽  
Rolf H Michels ◽  
Kathinka H Peels ◽  
Eric PCM Heijmen ◽  
...  

1996 ◽  
Vol 43 (10) ◽  
pp. 1732-1741 ◽  
Author(s):  
C.E. Weitzel ◽  
J.W. Palmour ◽  
C.H. Carter ◽  
K. Moore ◽  
K.K. Nordquist ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document