Improved Energy Efficiency Using an IGBT/SiC-Schottky Diode Pair

2012 ◽  
Vol 717-720 ◽  
pp. 1147-1150
Author(s):  
Nii Adotei Parker-Allotey ◽  
Dean P. Hamilton ◽  
Olayiwola Alatise ◽  
Michael R. Jennings ◽  
Philip A. Mawby ◽  
...  

This paper will demonstrate how the newer Silicon Carbide material semiconductor power devices can contribute to carbon emissions reduction and the speed of adoption of electric vehicles, including hybrids, by enabling significant increases in the driving range. Two IGBT inverter leg modules of identical power rating have been manufactured and tested. One module has silicon-carbide (SiC) Schottky diodes as anti-parallel diodes and the other silicon PiN diodes. The power modules have been tested and demonstrate the superior electrothermal performance of the SiC Schottky diode over the Si PiN diode leading to a reduction in the power module switching losses.

2010 ◽  
Vol 645-648 ◽  
pp. 1167-1170 ◽  
Author(s):  
Jochen Hilsenbeck ◽  
Zhang Xi ◽  
Daniel Domes ◽  
Kathrin Rüschenschmidt ◽  
Michael Treu ◽  
...  

Starting with the production of Infineon´s first silicon carbide (SiC) Schottky diodes in 2001, a lot of progress was achieved during recent years. Currently, a 3rd generation of MPS (merged pn Schottky) diodes is commercially available combining tremendous improvements with respect to surge current capability and reduced thermal resistance. In this work we present the implementation of SiC switches in power modules and a comparison of these units with the corresponding Si-based power modules. Also the frequency dependence of the total losses of the 1200V configurations using Si-IGBTs or SiC-JFETs as active device is shown, indicating that modules solution with a state of the art SiC JFET outperforms all other options for switching frequencies of 20 kHz and beyond. Additionally a total loss vs. frequency study will be presented. Furthermore, it is show that the switching losses of JFET based modules can be further reduced by reducing the internal distributed gate resistivity.


2011 ◽  
Vol 679-680 ◽  
pp. 583-586 ◽  
Author(s):  
David C. Sheridan ◽  
Andrew Ritenour ◽  
Volodymyr Bondarenko ◽  
Jeff B. Casady ◽  
Robin L. Kelley

This work presents the progress in developing an all SiC based power module for use in high frequency and high efficiency applications. Using parallel combinations of 1200V enhancement mode SiC VJFETs (36mm2) and Schottky diodes (23mm2), a total on-resistance of only 10mOhm (2.7m-cm2) was achieved at ID=100A in a commercially available standard module configured as a half-bridge circuit. Careful attention to module layout, gate driver design, and the addition of optimized snubbers resulted in excellent switching waveforms with low total switching losses of 1.25mJ when switching 100A at 150oC.


2006 ◽  
Vol 527-529 ◽  
pp. 1445-1448 ◽  
Author(s):  
Jim Richmond ◽  
Sei Hyung Ryu ◽  
Sumi Krishnaswami ◽  
Anant K. Agarwal ◽  
John W. Palmour ◽  
...  

This paper reports on a 400 watt boost converter using a SiC BJT and a SiC MOSFET as the switch and a 6 Amp and a 50 Amp SiC Schottky diode as the output rectifier. The converter was operated at 100 kHz with an input voltage of 200 volts DC and an output voltage of 400 volts DC. The efficiency was tested with an output loaded from 50 watts to 400 watts at baseplate temperatures of 25°C, 100°C, 150°C and 200°C. The results show the converter in all cases capable of operating at temperatures beyond the range possible with silicon power devices. While the converter efficiency was excellent in all cases, the SiC MOSFET and 6 Amp Schottky diode had the highest efficiency. Since the losses in a boost converter are dominated by the switching losses and the switching losses of the SiC devices are unaffected by temperature, the efficiency of the converter was effectively unchanged as a function of temperature.


2007 ◽  
Vol 556-557 ◽  
pp. 987-990 ◽  
Author(s):  
Praneet Bhatnagar ◽  
Nicolas G. Wright ◽  
Alton B. Horsfall ◽  
C. Mark Johnson ◽  
Michael J. Uren ◽  
...  

Silicon Carbide (SiC) power devices are increasingly in demand for operations which require ambient temperature over 300°C. This paper presents circuit applications of normally-on SiC VFETs at temperatures exceeding 300°C. A DC-DC boost converter using a 4H-SiC VJFET and a SiC Schottky Diode was fabricated and operated up to 327°C. A power amplifier achieved a voltage gain of 3.88 at 27°C dropping to 3.16 at 327°C. This 20 % reduction is consistent with the fall in transconductance of the device.


2018 ◽  
Vol 924 ◽  
pp. 822-826
Author(s):  
Jon Q. Zhang ◽  
Matthew McCain ◽  
Brett Hull ◽  
Jeff Casady ◽  
Scott Allen ◽  
...  

In this paper, we present our latest results on 650 V 4H-SiC DMOSFET developments for dual-side sintered power modules in electric drive vehicles. A low specific on-resistance (Rsp,on) of 1.8 mΩ⋅cm2has been achieved on 650 V, 7 mΩ 4H-SiC DMOSFETs at 25°C, which increases to 2.4 mΩ⋅cm2at 150°C. For the first time, the DMOSFET chip is designed specifically for use in dual-side soldering and sintering processes, and a 650 V, 1.7 mΩ SiC DMOSFET multichip half bridge power module has been built using the wirebond-free assembly. Compared to a similarly rated Si IGBT module, the conduction and switching losses were reduced by 80% and ~50%, respectively.


2012 ◽  
Vol 717-720 ◽  
pp. 1233-1236 ◽  
Author(s):  
Kohei Matsui ◽  
Yusuke Zushi ◽  
Yoshinori Murakami ◽  
Satoshi Tanimoto ◽  
Shinji Sato

We have developed a small-volume, high-power-output inverter with a high output power density using SiC power devices. To fully utilize the advantages of SiC power devices, it is necessary to reduce the inductance of the power module. This is done by using a double-layer ceramic substrate, attaining a low inductance of 5 nH. A double pulse test was carried out up to 60 A under a DC voltage of 600 V. The low inductance greatly reduced the surge voltage and the oscillation at the switching transient. The SiC inverter with a volume of 250 cc was assembled using three of the power modules. The cooling performance of the inverter was evaluated at a loss equivalent to an output power of 10 kW, and it was found that the inverter can output 10 kW at a junction temperature (Tj) of about 200°C.


2008 ◽  
Vol 600-603 ◽  
pp. 951-954 ◽  
Author(s):  
Ty McNutt ◽  
Stephen Van Campen ◽  
Andy Walker ◽  
Kathy Ha ◽  
Chris Kirby ◽  
...  

The development of 10 kV silicon carbide (SiC) MOSFETs and Junction Barrier Schottky (JBS) diodes for application to a 13.8kV 2.7 MVA Solid State Power Substation (SSPS) is shown. The design of half-bridge power modules has extensively used simulation, from electron level device simulations to the system level trade studies, to develop the most efficient module for use in the SSPS. In the work presented within, numerical simulations and experimental results are shown to demonstrate the design and operation of 10 kV JBS diodes. It is shown that JBS diodes at 10 kV can reduce 31% of the switching losses at 20 kHz than the fastest SiC PiN diodes.


2020 ◽  
Vol 842 ◽  
pp. 257-261
Author(s):  
Peng Zhang ◽  
Xiu Ying Ren ◽  
Hong Da Zhang ◽  
De Wen Zhang ◽  
See Lan ◽  
...  

In order to avoid the loss caused by sudden power failure or loss, UPS is very necessary.As the core part of UPS, the efficiency of DC-DC converter improvement has been a long-term research direction in the industry.Switch tube loss are the main factors influencing the DCDC converter efficiency, SI power component is affected by its material, its performance is difficult to further improve, seriously affect the efficiency of the DC-DC converter, SiC semiconductor with high band gap width, the advantages of high heat conductivity and high electric breakdown strength in recent years become a hot research direction at home and abroad, and silicon carbide material improves the device the possibility of high frequency, miniaturization and efficiency.Compared with Si power devices, the advantages of SiC power devices are higher voltage and temperature resistance, higher operating frequency and lower switching losses.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000247-000251
Author(s):  
Liqi Zhang ◽  
Suxuan Guo ◽  
Pengkun Liu ◽  
Alex Q. Huang

Abstract SiC MOSFET-gate driver integrated power module is proposed to provide ultra-low stray inductance compared to traditional TO-247 or TO-220 packages. Kelvin connection eliminates the common source stray inductance and zero external gate resistor enables faster switching. This module can be operated at MHz switching frequency for high power applications with lower switching losses than discrete packages. Two different gate drivers and two different SiC MOSFETs are grouped and integrated into three integrated power modules. Comparative evaluation and analysis of gate driver impacts on switching speed of SiC MOSFET is shown in detail. The paper provides an insight of the gate driver impacts on the device switching performance in an integrated power module.


1997 ◽  
Vol 483 ◽  
Author(s):  
C. E. Weitzel ◽  
K. E. Moore

AbstractImpressive RF power performance has been demonstrated by three radically different wide bandgap semiconductor power devices, SiC MESFET's, SiC SIT's, and AlGaN HFET's. AlGaN HFET's have achieved the highest fmax 97 GHz. 4H-SiC MESFET's have achieved the highest power densities, 3.3 W/mm at 850 MHz (CW) and at 10 GHz (pulsed). 4H-SiC SIT's have achieved the highest output power, 450 W (pulsed) at 600 MHz and 38 W (pulsed) at 3 GHz. Moreover a one kilowatt, 600 MHz SiC power module containing four multi-cell SIT's with a total source periphery of 94.5 cm has been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document