Application of Castor Oil Based Polyurethane Resin in the Dimension Stone Block Wrapping Process

2020 ◽  
Vol 848 ◽  
pp. 20-27
Author(s):  
Leonardo Luiz Lyrio da Silveira ◽  
Bruna dos Santos Cezar Ferreira ◽  
Phillipe Fernandes de Almeida ◽  
Victor Moza Ponciano

The dimension stone wrapping process is a method used before the sawing of the block which aims to enhance the integrity of the rock, thus ensuring that fractured or altered blocks remain intact while they are handling and splitting into slabs. This method increases safety and allows the processing of many materials once not commercialized. Nevertheless, the epoxy resin used in the process comes from a non-renewable resource and contains toxic substances on its composition. Therefore, in order to increase the eco-efficiency in the sector of dimension stones, a comparison of the epoxy resin with an ecological and non-toxic resin based on the castor oil, was carried out aiming to know the resulting tensile strength in the contact of the polymer with the stone surface. Two types of rocks were tested, a silicate and a carbonate one. The results indicated that the castor oil resin performed a higher tensile strength regarding carbonate rocks, suggesting that the castor oil resin could replace the epoxy resin when applied to this rock group, providing an environmental advantage and a global marketing differential.

2016 ◽  
Vol 858 ◽  
pp. 202-207
Author(s):  
Marcus Antonio Pereira Bueno ◽  
Fábio A. Moizés ◽  
Ivaldo D. Valarelli ◽  
Fernanda Christiane Rossetto Dinhane ◽  
Valter Roberto de Brito Celestino ◽  
...  

This paper analyze the potentiality of using the BOPP (bi-oriented polypropylene), a byproduct of automotive battery labeling, in the bamboo particleboard production to be used in architecture projects. On this research, were studied both physical and mechanical properties according to the standards NBR 14810-3/2006 and ANSI A208.1/1999. The particleboards are produced in three traces: 75% bamboo and 25% BOPP, 50% bamboo and 50% BOPP and 100% bamboo. The adhesive used was polyurethane resin with a castor oil base, weighing 12% of the total mass of each panel. The physical properties of water absorption and thickness swelling, in both periods of 2 hours and 24 hours, demonstrated a direct relation with the amount of BOPP and impermeability of particleboards produced. Regarding the mechanical properties of bending and tensile strength, the addition of BOPP had an inverse relation to these properties.


2020 ◽  
Vol 1010 ◽  
pp. 638-644
Author(s):  
Mohd Pisal Mohd Hanif ◽  
Abd Jalil Jalilah ◽  
Mohd Fadzil Hanim Anisah ◽  
Arumugam Tilagavathy

Biopolymer-based conductive polymer composites (CPCs) would open up various possibilities in biomedical applications owing to ease of processing, renewable resource and environmentally friendly. However, low mechanical properties are a major issue for their applications. In this study, the investigated the conductivity of chitosan/ PEO blend films filled with carbonized wood fiber (CWF) prepared by solution casting. The effect of CWF was also investigated on tensile properties and their morphological surfaces. The tensile results from different ratios of chitosan/PEO blend films without CWF show that the tensile strength and modulus increased with the increase of chitosan content and chitosan/PEO blend film with 70/30 ratio exhibited the best combination of tensile strength and flexibility. However, a reduction of tensile strength was observed when CWF amount was increased while the modulus of the tensile shows an increment. The film also exhibited higher electrical conductivity as compared to low chitosan ratio. The addition of CWF greatly enhanced the conductivity three-fold from 10-10 to 10-6 S/cm. The electrical conductivity continued to increase with the increase of CWF up to 30wt%. The surface morphology by Scanning Electron Microscopy (SEM) exhibits the absence of phase separation for the blends indicating good miscibility between the PEO and chitosan. Incorporation of CWF into the blend films at 5wt% showed agglomeration. However, the increase of CWF created larger agglomerations that formed conductive pathways resulting in improved conductivity. FTIR analysis suggested that intermolecular interactions occurred between chitosan and PEO while CWF interacts more with the protons of PEO.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 411
Author(s):  
Izabela Miturska ◽  
Anna Rudawska ◽  
Miroslav Müller ◽  
Monika Hromasová

The proper process of preparing an adhesive composition has a significant impact on the degree of dispersion of the composition ingredients in the matrix, as well as on the degree of aeration of the resulting composition, which in turn directly affects the strength and functional properties of the obtained adhesive compositions. The paper presents the results of tensile strength tests and SEM microphotographs of the adhesive composition of Epidian 57 epoxy resin with Z-1 curing agent, which was modified using three fillers NanoBent ZR2 montmorillonite, CaCO3 calcium carbonate and CWZ-22 active carbon. For comparison purposes, samples made of unmodified composition were also tested. The compositions were prepared with the use of six mixing methods, with variable parameters such as type of mixer arm, deaeration and epoxy resin temperature. Then, three mixing speeds were applied: 460, 1170 and 2500 rpm. The analyses of the obtained results showed that the most effective tensile results were obtained in the case of mixing with the use of a dispersing disc mixer with preliminary heating of the epoxy resin to 50 °C and deaeration of the composition during mixing. The highest tensile strength of adhesive compositions was obtained at the highest mixing speed; however, the best repeatability of the results was observed at 1170 rpm mixing speed. Based on a comparison test of average values, it was observed that, in case of modified compositions, the values of average tensile strength obtained at mixing speeds at 1170 and 2500 rpm do not differ significantly with the assumed level of significance α = 0.05.


2021 ◽  
Vol 5 (7) ◽  
pp. 191
Author(s):  
Yanshuai Wang ◽  
Siyao Guo ◽  
Biqin Dong ◽  
Feng Xing

The functionalization of graphene has been reported widely, showing special physical and chemical properties. However, due to the lack of surface functional groups, the poor dispersibility of graphene in solvents strongly limits its engineering applications. This paper develops a novel green “in-situ titania intercalation” method to prepare a highly dispersed graphene, which is enabled by the generation of the titania precursor between the layer of graphene at room temperature to yield titania-graphene nanocomposites (TiO2-RGO). The precursor of titania will produce amounts of nano titania between the graphene interlayers, which can effectively resist the interfacial van der Waals force of the interlamination in graphene for improved dispersion state. Such highly dispersed TiO2-RGO nanocomposites were used to modify epoxy resin. Surprisingly, significant enhancement of the mechanical performance of epoxy resin was observed when incorporating the titania-graphene nanocomposites, especially the improvements in tensile strength and elongation at break, with 75.54% and 176.61% increases at optimal usage compared to the pure epoxy, respectively. The approach presented herein is easy and economical for industry production, which can be potentially applied to the research of high mechanical property graphene/epoxy composite system.


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


2012 ◽  
Vol 182-183 ◽  
pp. 76-79 ◽  
Author(s):  
Lei Lei Song ◽  
Quan Rong Liu ◽  
Jia Lu Li

In this paper, carbon fiber reinforced resin matrix composites were produced by stacking eight pieces of carbon fiber woven plain fabric and subjected to accelerated ageing. Accelerated ageing was carried out in oven at 180°C for three different time intervals (60 hours, 120 hours and 180 hours). The influence of different ageing time intervals at 180°C on tensile properties of laminated composites was examined, compared with the composites without aging. The appearance and damage forms of these laminated composites were investigated. The results revealed that the tensile strength of the laminates declined significantly after long term accelerated aging at 180°C. The average tensile strengths of composite samples aged 60 hours, 120 hours, and 180 hours period of time at 180°C are 80.36%, 79.82%, 76.57% of average tensile strength of composite samples without aging, respectively. The high temperature accelerated aging makes the resin macromolecular structure in the composites changed, and then the adhesive force between fiber bundles and resin declines rapidly which result in the tensile strength of composites aged decrease. This research provides a useful reference for long term durability of laminated/epoxy resin composites.


Author(s):  
Akarsh Verma ◽  
Kamal Joshi ◽  
Amit Gaur ◽  
V. K. Singh

In this article, bio-composites derived from starch-glycerol biodegradable matrix reinforced with jute fibers have been fabricated using the wet hand lay-up and compression moulding techniques. Samples having different weight percentages of jute fiber in the starch matrix have been analysed. The fibers surface was chemically treated by alkaline sodium hydroxide for improving the interphase bonding between fiber and matrix. Tensile test for the composites were done and the sample with highest tensile strength was selected for further tests that included water absorption, scanning electron microscopy and thermal analysis. It has been concluded that the ultimate tensile strength was found to be maximum for the composition of 15% fiber by weight composite as 7.547 MPa without epoxy coating and 10.43 MPa with epoxy coating. The major disadvantage of bio-composite is its high water absorption property, which in this study has been inhibited by the epoxy resin layer. Herein, the results of various tests done disclose a noteworthy improvement in the overall properties of bio-composite, in comparison to the neat biodegradable starch matrix.


Sign in / Sign up

Export Citation Format

Share Document