Effect of Coefficient of Variation on the Reliability of Collapse Potential's Equation Predicted by ANNs

2020 ◽  
Vol 857 ◽  
pp. 195-202
Author(s):  
Ahmed M. Najemalden ◽  
Salah W. Ibrahim ◽  
Mahmoud D. Ahmed

In this paper, the Reliability Analysis with utilizing a Monte Carlo simulation (MCS) process was conducted on the equation of the collapse potential predicted by ANN to study its reliability when utilized in a situation of soil that has uncertainty in its properties. The prediction equation utilized in this study was developed previously by the authors. The probabilities of failure were then plotted against a range of uncertainties expressed in terms of coefficient of variation. As a result of reliability analysis, it was found that the collapse potential equation showed a high degree of reliability in case of uncertainty in gypseous sandy soil properties within the specified coefficient of variation (COV) for each property. When the COV ranges (0-100) for each soil properties under study, it was found also that the collapse potential equation is very well in predicting the collapse potential of gypseous sandy soils for all values of the COV lies between (0-100) % for initial water content and degree of saturation, and for values of the COV not exceed 11%, 19% for the initial dry unit weight and specific gravity respectively, as well as for the values of the COV not exceed 80%, 97% for the initial voids ratio and gypsum content respectively.

2020 ◽  
Vol 38 (7A) ◽  
pp. 1062-1068
Author(s):  
Falah H. Rahil ◽  
Husam H. Baqir ◽  
Nabeel J. Tumma

This paper presents the effect of spacing between boreholes heating on plasticity of expansive soils. The expansive soils used were prepared artificially by mixing Kut clay with different percentages of bentonite. Nine laboratory models of expansive soils having dry unit weight of 17.8 kN/m3 with 6% initial water content were prepared inside a steel box of (300 mm × 300 mm × 400 mm height).  A special heating system generates 400 Co for six hours was designed and manufactured for this purpose using 12 mm diameter electric heaters inserted through boreholes. Square pattern boreholes of 170 mm length with spacing (4.16d, 6.25d and 8.33d) were used. A representative sample were taken after heating from the center of the square pattern for measuring the plasticity of the soils. The results showed that the plasticity index remarkedly decreases compared with that before heating and increases with increasing bentonite and the spacing. It is also indicated that an expansive soil could be changed from high to low plasticity


2021 ◽  
Vol 31 (2) ◽  
pp. 138-162
Author(s):  
Souhila Adjabi ◽  
Mohamed Salah Nouaouria ◽  
Wafa Djebabla

Abstract In order to meet environmental and socio-economic challenges, the recycling of waste to be used in the treatment of geotechnical problems is one of the main ways of preserving the environment with a lower economic value. The objective of this experimental work is to improve the characteristics and to study the mechanical behaviour of collapsible soil treated with a new hydraulic stabilizer composed of Crushed Granulated Blast Furnace Slag (CGBS) active by Eggshell Waste (CES). The specimens were mixed with stabilizer content, varying from 0 to 15% in mass, with an initial water content of 4, 6 and 8% respectively. in mass. Oedometer apparatus was used to study the addition of new hydraulic stabilizer effect on the Collapse Potential. Triaxial tests are also conducted to determine the shear strength parameters (cohesion and internal friction angle) of this treated soil. The results of this research study show that the mechanical properties of the treated collapsible soil were significantly improved. An appreciable reduction in the collapse potential is observed. The addition of 15% of this new stabilizer with initial water content of 4% under a compaction of 60 blows/layer is capable of increasing internal friction angle and cohesion. It can be concluded from this study that the mixture of granulated slag and calcined eggshell can be used as an effective treatment of collapsibility phenomenon at low cost while protecting the environment from industrial waste.


2021 ◽  
Author(s):  
Deniz Yılmaz ◽  
Laurent Lassabatere ◽  
David Moret-Fernández ◽  
Borja Latorre

<p>For heterogeneous soils, accurate water modeling in unsaturated soil conditions is a very important prerequisite since activation of macropore during the flow process is directly linked to the bulk saturation of the soil matrix. Indeed, macropores activate and begin to infiltrate when they receive the runoff from saturated matrices. To this point, the accurate estimation of the matrix hydraulic properties is of uttermost importance. We then focus on the accuracy of estimates for hydraulic parameters, by fitting to the well-know Haverkamp 1D analytical infiltration equation, that is widely used for Beerkan type infiltration. This equation involves an infiltration constant called β that is fixed to a by-default value of 0.6. This value is considered for relatively dry condition and for all type of soils, including fine matrices (silt, clay, etc.) but also coarse soils which are prone to preferential flows. However, the values of β have already been questioned by several authors. In this study, we performed a numerical study to investigate the value of β. Several cumulative infiltrations were numerically generated and fitted to Haverkamp’s model to derive the parameter β. This was then plotted as a function of initial water content and the type of soil. We proved that β is not constant. Especially for lower permeable soils, previous studies point that β value must be over 1 which is in contradiction with the domain of definition of β and the usual ranges considered for this parameter. Therefore, using β equal to 0.6 leads to an overestimation of Ks, leading to an overestimation of the soil capability to infiltrate and the prediction of the water budget. Numerical investigations of β show that this parameter is also a function of the degree of saturation. As defined by Haverkamp (1994), it varies from 1 for dry soil conditions to zero for saturated conditions. The hypothesis of the constancy of β allows easy integration of Richards 1D equation, leading to the formulation proposed by Haverkamp et al. However, it conducts for low permeable of soils to overestimate Ks. In this study, we demonstrate that the use of the adequate function for describing β in function to the degree saturation and the soil type improves significantly the accuracy of Haverkamp’s model.</p>


2012 ◽  
Vol 256-259 ◽  
pp. 86-89 ◽  
Author(s):  
Xin Jun Chai ◽  
Pei Hang Chen ◽  
Chun Feng He ◽  
Yan Sheng Gao

Tianluoshan relic sites is a typical earthen sites located at moisture circumstances. The potential application of silicone for strengthening Tianluoshan relic soils were evaluated by a series of laboratory drip injection tests. The main considered influence factors include: dry density, initial water content and degree of saturation. The results show that the drip injection effect of silicone for Tianluoshan relic soils greatly related with dry density and initial water content, the practical application guidance are also presented in the paper.


Author(s):  
Gülay Karahan

Sorptivity (S) is the fundamental variable controlling the early infiltration process. Besides soil properties, soil initial water content (θi) and/or matric pressure (hi) are key factors determining extent of S. Assessment of interrelationship among S, hi and soil properties can provide a considerable insight into understanding the behaviour of dry soils to rainfall or irrigation water. This study was conducted to evaluate relationship between S and some selected soil parametric and morphometric properties within a range of hi. Sixteen undisturbed soil samples (5 cm id, 5 cm length) were taken from the topsoil (0-15 cm) of a paddy soil with clay texture. Sorptivity was measured with a mini-disc infiltrometer (MDI) on the samples equilibrated at h, ranging from -20 to -1500 kPa. A parameter (η), representing the relationship between S and hi, was introduced. Correlation analysis was conducted between η and selected soil morphometric and parametric properties. Soil structure and clay content appeared the most important soil attributes influencing S-hi relation between -200 and -1500 kPa. The results provided a fundamental understanding on S-hi-soil properties interrelations in a clay soil. The methodology developed in this study can be used to evaluate S-hi relationship across different soils and scales.


2013 ◽  
Vol 726-731 ◽  
pp. 3706-3709 ◽  
Author(s):  
Pei Hang Chen ◽  
Xin Jun Chai ◽  
Jin He Gao ◽  
Yu Jiao Wang

Tianluoshan relic sites is a typical earthen sites located at moisture circumstances, where craking, chalking, flaking and mould are the main geological diseases after excavation. For public exhibition and long-term preservation purpose, chemical stabilization were required. In this study, the potential application of methyl acrylic acid resin for solidification of Tianluoshan relic soils were evaluated by a series of laboratory permeation tests. The main considered influence factors include: dry density, initial water content and degree of saturation. The results show that the permeation effect of methyl acrylic acid resin were greatly related with dry density and initial water content of the earthen soils, the practical application guidance are also presented.


Author(s):  
Adnan A. Basma ◽  
Amer Ali Al-Rawas

This work presents a methodology to determine in-situ heave of foundations due to soil expansion. A total of 206 soil specimens from a semi-arid region (lrbid city in northern Jordan) were tested in the laboratory to produce a model for predicting the swell percent, SP. The results indicate that SP is strongly dependent on the placement conditions (initial water content and dry unit weight), clay content of the soil and the initial applied pressure. Utilizing this model, an Advanced BASIC computer program was written to evaluate in-situ heave. It was verified using actual field data: The program provides a Simple means for approximately determining foundation heave.


Author(s):  
Xiaobing Li ◽  
Jianpeng Chen ◽  
Xiuqing Hu ◽  
Hongtao Fu ◽  
Jun Wang ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 90
Author(s):  
Andrzej Bryś ◽  
Joanna Bryś ◽  
Marko Obranović ◽  
Dubravka Škevin ◽  
Szymon Głowacki ◽  
...  

The olive oil industry represents an important productive sector in the Mediterranean basin countries. Olive stone is an essential by-product generated in the olive oil extraction industries and it represents roughly 10% by weight of the olive fruit. The seeds of pickled olives are also a significant waste product. In the present study, we have investigated the possibility of the use of differential scanning calorimetry for the thermal characterization of seeds from green and black pickled olives from Croatia. The differential scanning calorimeter (DSC) with a normal pressure cell equipped with a cooling system was used to determine the thermal properties of seeds from olives. The following analyses were also performed: the determination of calorific values in a pressure bomb calorimeter, the determination of initial water content, the determination of changes of water content during drying at the temperatures of 30 °C, 50 °C and 80 °C, the determination of a percentage content of seeds mass to the mass of the whole olives, and the determination of ash content. Seeds from olives are characterized by very good parameters as a biomass. The analyzed olive seeds were characterized by low water content, low ash content, and a relatively high caloric value.


2013 ◽  
Vol 19 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Zhiqing Li ◽  
Chuan Tang ◽  
Ruilin Hu ◽  
Yingxin Zhou

According to Mengzi expansive soil, consolidated drained tests and undrained tests are carried on under saturated and remoulded conditions. The stress-strain characteristics of saturated soil are researched systematically under different confining pressure, initial dry density, initial water content, shearing rate and drainage condition. The inherent unity of diversity of shearing strength for the same samples measured by different experimental methods is indicated according to the normalization of critical state test results. And the failure lines in p ‘- q - ν space of remoulded saturated expansive soil under consolidated drained and undrained conditions are attained. The hyperbolic curve model can fit well the weak hardening stress-strain curves and the exponential curve model can fit the weak softening stress-strain curves. The test results can provide technical parameters and theoretical help for shearing strength variation of slope during rainfall and strength state of soil structure in normal water level.


Sign in / Sign up

Export Citation Format

Share Document