Improvement of CNC Lathe Performances by Tungsten-Carbide Tool Using Desirability Function Analysis for Fabrication of Miniature Component

2020 ◽  
Vol 1002 ◽  
pp. 3-11
Author(s):  
Azzam Sabah Hameed ◽  
Mohaned S. Jafar ◽  
Bijan Mallick

Computer numerical control (CNC) machine has greater utility in the modern advanced industrial field. This paper deals with the parametric effects such as spindle speed (1500-2100 rpm) (N) (X1), depth of cut (DOC) (0.15-0.55 mm) (X2) and feed rate (f) (30-50 mm/min) (X3) on machining characteristics like tool wear rate (TWR) and surface roughness (Ra) during fabrication of IS-617 Aluminum miniature component by advanced CNC lathe using Tungsten-carbide tool. The article analyzes the second-order mathematical model development with co-relation of co-efficient of regression (COR) and analysis of variances (ANOVA) using desirability function analysis during the production of the miniature segment. The paper also consists of multi-criteria optimization for achieving the optimal parametric combination for minimum surface roughness and tool wear rate for this manufacturing operation. The paper also shows the fabricated micro-product of Aluminum at the optimal parametric conditions using CNC programming. It is found that spindle speed has a greater effect on the tool wear rate and depth of cut has dominating effects on surface roughness of job specimen. Desirability parametric combination for minimized surface roughness as well as tool wear rate has been found 1523 rpm/0.15mm/30mmmin-1.

2021 ◽  
Vol 23 (11) ◽  
pp. 228-235
Author(s):  
Sunil Kumar ◽  
◽  
P.N . Rao ◽  

The purpose of this experimental research is to compare the effectiveness of using Taguchi approaches for multi-response optimization of process parameters in Vertical Milling Machine of EN 31 Material intending to minimize surface roughness and tool wear rate while maximizing material removal rate to improve the productivity of the process with coated carbide insert. Taguchi L9 and Annova have been applied for experimental design and analysis. This experiment shows that feed and depth of cut are factors that are important for tool wear, Depth of cut is a notable factor for Material Removal Rate and feed is the most notable factor for surface roughness. Spindle speed has little effect on tool wear rate, surface roughness, and material removal rate. Mathematical models for three response parameters i.e. tool wear rate, surface roughness, and material removal rate were obtained by regression analysis


2014 ◽  
Vol 903 ◽  
pp. 194-199
Author(s):  
Mohd Zairulnizam Zawawi ◽  
Mohd Ali Hanafiah Shaharudin ◽  
Ahmad Rosli Abdul Manaf

Machining technique using high spindle speed, high feed rate and shallow depth of cut utilize in High Speed Milling (HSM) machines offer several benefits such as increase of productivity, elimination of secondary and semi-finishing process, reduce tool load and small chips produced. By adjusting some of the machining parameters, non-HSM machine having lower spindle speed and feed rate could also take advantages some of the benefits mentioned above when applying the HSM technique. This experiment investigate the effects of varying combination of depth of cut and feed rate to tool wear rate and surface roughness during end milling of Aluminum and P20 tool steel in dry condition. The criterion for tool wear before it gets rejected is based on maximum flank wear, Vb of 0.6mm. Material removal rate, spindle speed and radial depth of cut are constant in this experiment. After preliminary machining trials, the combination starts with depth of cut of 2mm and feed rate of 45mm/min until the smallest depth of cut and highest feed rate of 0.03mm and 3000mm/min respectively. The obtained result shows that for both materials, feed rate significantly influences the surface roughness value while depth of cut does not as the surface roughness value keep increasing with the increase of feed rate and decreasing depth of cut. Whereas, tool wear rate almost remain unchanged indicates that material removal rate strongly contribute the wear rate. With no significant tool wear rate, this study demonstrates that HSM technique is possible to be applied in non-HSM machine with extra benefits of eliminating semi-finishing operation, reducing tool load for finishing, machining without coolant and producing smaller chip for ease of cleaning.


2020 ◽  
Vol 7 ◽  
pp. 34 ◽  
Author(s):  
Samuel Ranti Oke ◽  
Gabriel Seun Ogunwande ◽  
Moshood Onifade ◽  
Emmanuel Aikulola ◽  
Esther Dolapo Adewale ◽  
...  

Machining is one of the major contributors to the high cost of titanium-based components. This is as a result of severe tool wear and high volume of waste generated from the workpiece. Research efforts seeking to reduce the cost of titanium alloys have explored the possibility of either eliminating machining as a processing step or optimising parameters for machining titanium alloys. Since the former is still at the infant stage, this article provides a review on the common machining techniques that were used for processing titanium-based components. These techniques are classified into two major categories based on the type of contact between the titanium workpiece and the tool. The two categories were dubbed conventional and non-conventional machining techniques. Most of the parameters that are associated with these techniques and their corresponding machinability indicators were presented. The common machinability indicators that are covered in this review include surface roughness, cutting forces, tool wear rate, chip formation and material removal rate. However, surface roughness, tool wear rate and metal removal rate were emphasised. The critical or optimum combination of parameters for achieving improved machinability was also highlighted. Some recommendations on future research directions are made.


2014 ◽  
Vol 941-944 ◽  
pp. 1973-1976
Author(s):  
B. Geetha ◽  
K. Ganesan

An investigation was carried out to find out the influence of process parameters on surface roughness (SR) and material removal rate (MRR) in electric discharge machine of Al-7%Si-4%Mg with 20% of red mud Metal Matrix Composites since electric discharge machining is a thermo-electric machining process, an electronic die sinking electric discharge machine was used to drill holes in the composite work piece, copper is used as tool material. Experiment was carried out to find surface roughness, material removal rate and tool wear rate by varying the peak current, flushing pressure of dielectric fluid and pulse on time. It was found that the surface roughness of composite metal increases with the increase peak current ,pulse on time and flushing pressure due larger and deeper craters on the drilled surface. It was also found that there was increase in metal removal rate with the increase in peak current and flushing pressure and slightly decreases with the increase in pulse on time due carbon deposits on the electrodes. Experimental analysis is carried using Taguchi’s Design of Experiment method with various parameters like peak current, flushing pressure of dielectric fluid and pulse on time to identify the key factors that influence the surface roughness, material removal rate and tool wear rate. It was found that the peak current was the most significant parameter that influences surface roughness, material removal rate and tool wear rate. The Taguchi experiments results confirm the actual results obtained from the numerical calculation.


2017 ◽  
Vol 24 (02) ◽  
pp. 1750018 ◽  
Author(s):  
SAEED DANESHMAND ◽  
BEHNAM MASOUDI ◽  
VAHID MONFARED

Nowadays, composites are used in different parts of industries and it is one of the most important subjects. The most widely used reinforcements in metal matrix composites are Al2O3 and SiC fibers and particles which may be used in cutting-edge functional and structural applications of aerospace, defense, and automobile industries. Depending on the type of powder used, composite materials are difficult to machine by conventional cutting tools and methods. The most appropriate way for machining of these composites is electro discharge. For the reason of improving the surface quality, tool wear rate and material removal rate and reducing the cracks on the surface, Al2O3 powder was used. In this study, the effect of input parameters of EDM such as voltage, pulse current, pulse on-time and pulse off-time on output parameters like material removal rate, tool wear rate and surface roughness in both conditions of the rotary tool with powder mixed dielectric EDM and the stationary tool excluding powder mixed dielectric were investigated. The critical parameters were identified by variance analysis, while the optimum machining parameter settings were achieved via Taguchi method. Results show that using of powder mixed dielectric and rotary tool reduce the tool wear rate, surface roughness and the cracks on the surface significantly. It is found also that using of powder mixed dielectric and rotary tool improve the material removal rate due to improved flushing action and sparking efficiency. The analysis of variance showed that the pulse current and pulse on-time affected highly the MRR, TWR, surface roughness and surface cracks.


2021 ◽  
Author(s):  
Adam Khan M ◽  
Winowlin Jappes J T ◽  
Samuel Ratna Kumar P S ◽  
Mashinini P M

Abstract In this research work, the nickel – titanium based shape memory alloys are machined using electro spark machining process. The influence of the input process for electro spark production is studied in detail. From the analysis, the tool wear rate (TWR), surface roughness, and material removal rate (MRR) are investigated. The intensity of the electro spark produced at minimum pulse on-time 10 µs and maximum applied voltage (60 V). Variation in MRR is wide for a minimum pulse on time with low applied voltage. The surface roughness of the machined surface is also directly influenced by the in – efficient spark produced. The copper electrode with increase pulse duration the alloy behaves like a strong conductor to transmit electrical energy between the electrode and work material. The contribution of pulse on-time is maximum for material removal and tool wear rate. However, the surface finish depends on the applied voltage of the process designed. The impact on machined surfaces, micro-cracks, electro-discharge carter's, and recast material due to electrical discharge were assessed using a scanning electron microscope and energy-dispersive X-ray spectroscopy (EDX) analysis. The experimental value shows that material removal depends on the pulse on process timings and applied voltage. Thus, by using mathematical analysis the influence of (electric discharge machining) EDM process parameters was evaluated.


2019 ◽  
Vol 18 (01) ◽  
pp. 57-83 ◽  
Author(s):  
Rajeev Kumar ◽  
Somnath Chattopadhyaya ◽  
G. K. Singh ◽  
Umesh Kumar Vates

Electrical discharge machining with rotary tool is known as electric discharge drilling (EDD) which is being widely used for machining the difficult-to-cut materials like super alloy, ceramics and composite materials. Present research work has been introduced to find the impact of four influencing input factors discharge current (C), pulse off time ([Formula: see text]), pulse-on time ([Formula: see text]) and drill speed (S) on the response, tool wear rate (TWR), metal removal rate (MRR) and Centre line average value of surface roughness (Ra). The spark erosion drilling was performed on the Inconel 718 with rotating copper electrode. The major performances characteristics material removal rate (MRR), tool wear rate (TWR), and surface roughness (SR) are to be evaluated with consultation of Response Surface Methodology (RSM) techniques. The central composite rotatable design (CCRD) has been reported to plan the experimental design and developing the model for prediction of data within the range of investigation. ANOVA test was also carried out to check the adequacy for development of models. It has been evaluated that discharge current, [Formula: see text], and [Formula: see text] have been found as most significant factors that effects on the performance measures. The models have 86.02, 84.29, and 83.15% values of correlation coefficient (R2) for MRR, TWR and Ra whereas the adjusted R2 (R2 adj) are 73.80%, 70.55%, and 68.41% for MRR, TWR and SR, respectively.


Author(s):  
A.K. Parida ◽  
K.P. Maity

This paper presents a desirability function approach in order to find out an optimal combination of Machining parameters for multi-response parameters in hot turning operation of nickel based alloy. Taguchi’s L9 orthogonal array is used for experimental design. The machining parameters such as cutting velocity, feed rate, depth of cut and temperature are optimized by multi-response considerations namely power, flank wear, and MRR. ANOVA test was carried out and it was found that cutting speed is most influence parameter followed by feed rate, depth of cut and workpiece temperature. The optimization of machining parameters was found at 5.8 m/min of cutting speed, 30 °C preheating temperature, 0.2 mm depth of cut and 0.15 mm/rev feed rate


2021 ◽  
Vol 13 (13) ◽  
pp. 7321
Author(s):  
Md. Rezaul Karim ◽  
Juairiya Binte Tariq ◽  
Shah Murtoza Morshed ◽  
Sabbir Hossain Shawon ◽  
Abir Hasan ◽  
...  

Clean technological machining operations can improve traditional methods’ environmental, economic, and technical viability, resulting in sustainability, compatibility, and human-centered machining. This, this work focuses on sustainable machining of Al-Mg-Zr alloy with minimum quantity lubricant (MQL)-assisted machining using a polycrystalline diamond (PCD) tool. The effect of various process parameters on the surface roughness and cutting temperature were analyzed. The Taguchi L25 orthogonal array-based experimental design has been utilized. Experiments have been carried out in the MQL environment, and pressure was maintained at 8 bar. The multiple responses were optimized using desirability function analysis (DFA). Analysis of variance (ANOVA) shows that cutting speed and depth of cut are the most prominent factors for surface roughness and cutting temperature. Therefore, the DFA suggested that, to attain reasonable response values, a lower to moderate value of depth of cut, cutting speed and feed rate are appreciable. An artificial neural network (ANN) model with four different learning algorithms was used to predict the surface roughness and temperature. Apart from this, to address the sustainability aspect, life cycle assessment (LCA) of MQL-assisted and dry machining has been carried out. Energy consumption, CO2 emissions, and processing time have been determined for MQL-assisted and dry machining. The results showed that MQL-machining required a very nominal amount of cutting fluid, which produced a smaller carbon footprint. Moreover, very little energy consumption is required in MQL-machining to achieve high material removal and very low tool change.


Sign in / Sign up

Export Citation Format

Share Document