Advanced Structured of MgO Thin Film for Bio Applications

2020 ◽  
Vol 1002 ◽  
pp. 319-330
Author(s):  
Alaa Aladdin Abdullah-Hamead

Extensive efforts to further promoting the Anti-Bacteria and structural properties of thin films to reach reliability and possibility of commercialization, the chemical Tri-metal oxide component was verification as Anti-Bacteria factor in this paper. Pure and mixed thin films of magnesium oxide MgO was prepared by evaporation assisted laser Nedmyum - YAG pulse Nd: YAG laser system, MgO enhanced by adding Ti and Se, at (0.5, 1, 1.5 and 2%) by weight percentage. After that, calcination is done at 400 °C for 30 min. Structural and anti-bacterial growth inspections were performed. Experimental results showed that structural properties have improved significantly with the development of a MgO thin films with tri-metal oxide; Magnesium titanium oxide Mg2TiO4 and Magnesium selenate MgSeO4 phases. Moreover, there has been an enhancement in anti-bacteria properties, which makes these thin films more reliable for protection against bacteria.

1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2021 ◽  
Author(s):  
Cyril Robinson Azariah John Chelliah ◽  
Rajesh Swaminathan

The semiconductor industry flourished from a simple Si-based metal oxide semiconductor field effect transistor to an era of MOSFET-based smart materials. In recent decades, researchers have been replacing all the materials required for the MOSFET device. They replaced the substrate with durable materials, lightweight materials, translucent materials and so on. They have came up with the possibility of replacing dielectric silicon dioxide material with high-grade dielectric materials. Even then the channel shift in the MOSFET was the new trend in MOSFET science. From the bulk to the atomic level, transistors have been curiously researched across the globe for the use of electronic devices. This research was also inspired by the different semiconductor materials relevant to the replacement of the dielectric channel/gate. Study focuses on diverse materials such as zinc oxides (ZnO), electrochromic oxides such as molybdenum oxides (including MoO3 and MoO2) and other binary oxides using ZnO and MoO3. The primary objective of this research is to study pulsed laser deposited thin films such as ZnO, MoO3, binary oxides such as binary ZnO /MoO3, ZnO /TiO2 and ZnO/V2O5 and to analyse their IV properties for FET applications. To achieve the goal, the following working elements have been set: investigation of pulsed laser deposited thin film of metal oxides and thin film of binary metal oxide nanostructures with effects of laser repetition and deposition temperatures.


2015 ◽  
Vol 25 (17) ◽  
pp. 2564-2572 ◽  
Author(s):  
Guoxia Liu ◽  
Ao Liu ◽  
Huihui Zhu ◽  
Byoungchul Shin ◽  
Elvira Fortunato ◽  
...  

2012 ◽  
Vol 576 ◽  
pp. 577-581 ◽  
Author(s):  
N.D.M. Sin ◽  
Mohamad Hafiz Mamat ◽  
Mohamed Zahidi Musa ◽  
S. Ahmad ◽  
A. Abdul Aziz ◽  
...  

The effect of RF power on the formation and morphology evolution of ZnO nanostructured thin films deposited by magnetron sputtering are presented. This project focused on electrical, optical and structural properties of ZnO thin films. The effect of variation of RF power at 50 watt-250 watt at 200 °C on glass substrate of the ZnO thin films was investigated. The thin films were examined for electrical properties and optical properties using two point probe current-voltage (I-V) measurement (Keithley 2400) and UV-Vis-NIR spectrophotometer (JASCO 670) respectively. The structural properties were characterized using field emission scanning electron microscope (FESEM) (JEOL JSM 7600F) and atomic force microscope (AFM) (Park System XE-100). The IV measurement indicated that at RF power 200 watt the conductivity of ZnO thin film show the highest. All films show high UV absorption properties using UV-VIS spectrophotometer (JASCO 670). The root means square (rms) roughness for ZnO thin film were about 4 nm measured using AFM. The image form FESEM observed that transformation of structure size started to change as the RF power increase.


2021 ◽  
Vol 59 (3) ◽  
pp. 162-167
Author(s):  
Jae Young Kim ◽  
Geonoh Choe ◽  
Tae Kyu An ◽  
Yong Jin Jeong

Solution-processed zinc tin oxide (ZTO) thin-film transistors (TFTs) have great potential uses in next-generation wearable and flexible electronic products. Zinc and tin precursor materials are naturally abundant and have low fabrication costs. To integrate a single ZTO TFT into logic circuits including inverters, NAND, and NOR gates will require the development of a facile patterning process to replace conventional and complicated photolithography techniques which are usually time-consuming and toxic. In this study, self-patterned ZTO thin films were prepared using a photo-patternable precursor solution including a photoacid generator, (4-methylthiophenyl)methyl phenyl sulfonium triflate. Solution-processed ZTO precursor films fabricated with the photoacid generator were successfully micropatterned by UV exposure, and transitioned to a semiconducting ZTO thin film by heat treatment. The UV-irradiated precursor films became insoluble in developing solvent as the generated proton from the photoacid generator affected the metal-containing ligand and changed the solubility of the metal oxide precursors. The resulting ZTO thin films were utilized as the active layers of n-type TFTs, which exhibited a typical n-type transfer, and output characteristics with appropriate threshold voltage, on/off current ratio, and field-effect mobility. We believe that our work provides a convenient solution-based route to the fabrication of metal-oxide semiconductor patterns.


2020 ◽  
Vol 301 ◽  
pp. 35-42
Author(s):  
Nabihah Kasim ◽  
Zainuriah Hassan ◽  
Way Foong Lim ◽  
Sabah M. Mohammad ◽  
Hock Jin Quah

In this work, ZnO thin films were prepared by the low-cost sol-gel deposition method onto six different substrates (glass, ITO coated glass, sapphire (Al2O3), p-Si, p-GaN and polyethylene terephthalate (PET)) to study the effects of these substrates on the morphological and structural properties of the produced films. Precursor solution is Zinc acetate dihydrate based dissolved in ethanol with monoethanolamine (C2H7NO) added to act as a stabilizing agent to the sol. The corresponding ZnO thin films were characterized using field emission scanning electron microscopy (FESEM), high resolution X-ray diffraction (XRD) and atomic force microscopy (AFM). Results revealed distinct morphological and structural properties of ZnO thin films deposited on each substrate. The most uniform morphology was identified on glass, owing to the acquisition of the averagely stable grain sizes (58 nm – 61 nm) and thin film thicknesses (280 nm – 325 nm). High resolution XRD analysis showed that the films deposited on glass, ITO, p-Si, and p-GaN were attributed to hexagonal crystallite structures while the films deposited on sapphire and PET substrates exhibited amorphous phases. Amongst the samples, the ZnO thin film spin coated on p-Si demonstrated preferred orientation in (002) direction.


2012 ◽  
Vol 576 ◽  
pp. 417-420 ◽  
Author(s):  
N.N. Hafizah ◽  
Ismail Lyly Nyl ◽  
M.Z. Musa ◽  
Mohamad Rusop Mahmood

In this study, PMMA/TiO2 nanocomposite thin films were prepared by using sonication spin coating technique. The PMMA and TiO2 solution were mixed together and sonicated for 1h to confirm the homogeneity of the sample. The thin films obtained were then measured using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR). FESEM micrograph reveals that the uniformity increases with the increase of TiO2 weight percentage.


Sign in / Sign up

Export Citation Format

Share Document