A Comparison of Quantum Correction Models for Nanoscale MOS Structures under Inversion Conditions

2005 ◽  
Vol 480-481 ◽  
pp. 603-610 ◽  
Author(s):  
Yiming Li

Quantum correction model features the correction of the inversion layer charge on different classical transport models in semiconductor device simulation. This approach has successfully been of great interest in the recent years. Considering a metal-oxide-semiconductor (MOS) structure in this paper, the Hänsch, the modified local density approximation (MLDA), the density-gradient (DG), the effective potential (EP), and our models are investigated computationally and compared systematically with the result of the Schrödinger-Poisson (SP) model. In terms of the accuracy for (1) the position of the charge concentration peak, (2) the maximum of the charge concentration, (3)the total inversion charge sheet density, and (4) the average inversion charge depth, these well-established models are examined simultaneously. The DG model requires the solution of a boundary value problem, the EP model overestimates the position of the charge concentration peak and the maximum of the charge concentration, our explicit model demonstrates good accuracy among models.

2010 ◽  
Vol 7 (2) ◽  
pp. 185-193 ◽  
Author(s):  
Amit Chaudhry ◽  
Nath Roy

In this paper, an analytical model has been developed to study inversion layer quantization in nanoscale Metal Oxide Semiconductor Field Effect Oxide p-(MOSFET). n-MOSFETs have been studied using the variation approach and the p-MOSFETs have been studied using the triangular well approach. The inversion charge density and gate capacitance analysis for both types of transistors has been done. There is a marked decrease in the inversion charge density and the capacitance of the p-MOSFET as compared to n-MOSFETs. The results are compared with the numerical results showing good agreement.


2011 ◽  
Vol 8 (2) ◽  
pp. 147-154
Author(s):  
Amit Chaudhry ◽  
Nath Jatindra

An analytical model for the inversion layer quantization for nanoscale - Metal Oxide Semiconductor Field Effect Transistor (MOSFET) with different crystallographic substrate orientations, such as (100), (110) and (111) has been developed. The threshold voltage analysis has been studied using the quantum inversion charge model under three substrate orientations. The results indicate a significant impact of crystal orientation on the threshold voltage and the inversion charge density. The results have also been compared with the numerically reported results and show good agreement.


2019 ◽  
Vol 59 ◽  
pp. 137-148 ◽  
Author(s):  
Palanichamy Vimala ◽  
N.R. Nithin Kumar

The paper proposes analytical model for Gate-All-Around Metal Oxide Semiconductor Field Effect Transistor (GAA-MOSFET) for germanium channel including quantum mechanical effects. It is achieved by solving coupled Schrodinger-Poisson’s equation using variational approach. The proposed model takes quantum confinement effects to obtain charge centroid and inversion charge model. By using these models the quantum version of inversion layer capacitance, inversion charge distribution function and Drain current expressions are modelled and the performance evaluation of the developed model is compared with Silicon channel GAA-MOSFET. Analytically modelled expressions are verified by comparing the model with simulation results.


2018 ◽  
Vol 50 (2) ◽  
pp. 225-235
Author(s):  
Tijana Kevkic ◽  
Vladica Stojanovic ◽  
Vera Petrovic ◽  
Dragan Randjelovic

In this paper, the expression for the charge density in inversion layer at the surface of semiconductor has been improved. The improvement is related to the replacement of an empirical smoothing factor by new one which has generalized logistic (GL) functional form. The introduction of the GL function of the second type in the original interpolating expression leads to continual and smooth transition of the inversion charge density (ICD) between different regions of metal-oxide-semiconductor (MOS) operation. Moreover, in this way any empirical determinations are avoided. The simulated values of the ICD match closely with the numerical results of implicit charge sheet model for a wide range of dopant concentration and oxide thickness. In addition, the proposed GL fitting procedure has been also extended in the case where quantum mechanical effects play important role in inversion mode of scaled MOS devices.


1987 ◽  
Vol 65 (8) ◽  
pp. 995-998
Author(s):  
N. G. Tarr

It is shown that the accuracy of the charge-sheet model for the long-channel metal-oxide-semiconductor field-effect transistor can be improved by allowing for the small potential drop across the inversion layer, and by using a more accurate analytic approximation for the charge stored in the depletion region.


2006 ◽  
Vol 88 (15) ◽  
pp. 152101 ◽  
Author(s):  
D. Q. Kelly ◽  
I. Wiedmann ◽  
J. P. Donnelly ◽  
S. V. Joshi ◽  
S. Dey ◽  
...  

2001 ◽  
Vol 684 ◽  
Author(s):  
Jane P. Chang

Recognizing that the traditional engineering education training is often inadequate in preparing the students for the challanges presented by this industry's dynamic environment and insufficient to meet the empoyer's criteria in hiring new engineers, a new curriculum on Semiconductor Manufacturing is instituted in the Chemical Engineering Department at UCLA to train the students in various scientific and technologica areas that are pertinenet to the microelectronics industries. This paper describes this new mutidisciplinary curriculum that provides knowledge and skills in semiconductor manufacturing through a series ofcourses that emphasize on the application of fundamenta engineeering disciplines in solid-state physics, materials science of semiconductors, and chemical processing. The curriculum comprises three major components:(1)a comprehensive course curriculum in semiconductor manufacturing; (2) a laboratory for hands-on training in semiconductor device fabrication; (3) design of experiments. The capstone laboratory course is designed to strengthen students’ training in “unit operatins” used in semicounductor manufacturing and allow them to practice engineering principles using the state-of-the-art experimental setup. It comprises the most comprehensive training(seven photolithographic steps and numero0us chemical processes)in fabricating and testing complementary metal-oxide-semiconductor (CMOS) devices. This curriculum is recentyaccredited by the Accreditation Board for Engineering and Technology(ABET).


Sign in / Sign up

Export Citation Format

Share Document