Influence of Overgrown Micropipes in the Active Area of SiC Schottky Diodes on Long Term Reliability

2005 ◽  
Vol 483-485 ◽  
pp. 925-928 ◽  
Author(s):  
Roland Rupp ◽  
Michael Treu ◽  
Peter Türkes ◽  
H. Beermann ◽  
Thomas Scherg ◽  
...  

Other than open micropipes (MP), overgrown micropipes do not necessarily lead to a^significantly reduced blocking capability of the affected SiC device. However they can lead to a degradation of the device during operation. In this paper the physical structure of overgrown micropipes will be revealed and their contribution to the leakage current will be shown. The possible impact of the high local power dissipation in the surrounding of the overgrown micropipe will be discussed and long term degradation mechanisms will be described. Failure simulation under laboratory conditions shows a clear correlation between the position of overgrown micropipes and the location of destructive burnt spots.

Author(s):  
Roland Rupp ◽  
Michael Treu ◽  
Peter Türkes ◽  
H. Beermann ◽  
Thomas Scherg ◽  
...  
Keyword(s):  

Author(s):  
Allen Angel ◽  
Kathryn A. Jakes

Fabrics recovered from archaeological sites often are so badly degraded that fiber identification based on physical morphology is difficult. Although diagenetic changes may be viewed as destructive to factors necessary for the discernment of fiber information, changes occurring during any stage of a fiber's lifetime leave a record within the fiber's chemical and physical structure. These alterations may offer valuable clues to understanding the conditions of the fiber's growth, fiber preparation and fabric processing technology and conditions of burial or long term storage (1).Energy dispersive spectrometry has been reported to be suitable for determination of mordant treatment on historic fibers (2,3) and has been used to characterize metal wrapping of combination yarns (4,5). In this study, a technique is developed which provides fractured cross sections of fibers for x-ray analysis and elemental mapping. In addition, backscattered electron imaging (BSI) and energy dispersive x-ray microanalysis (EDS) are utilized to correlate elements to their distribution in fibers.


1999 ◽  
Vol 575 ◽  
Author(s):  
H.-P. Brack ◽  
M. M. Koebel ◽  
A. Tsukada ◽  
J. Huslage ◽  
F. Buechi ◽  
...  

ABSTRACTWe have demonstrated earlier the useful performance of our PSI radiation-grafted membranes in terms of the current-voltage characteristics of 30 cm2 active area fuel cells containing these membranes and their long-term testing over 6,000 h at 60 °C. We report here on testing of PSI radiation-grafted membranes in these fuel cells at 80 °C and in short stacks comprised of two or four 100 cm2 active area cells. The in-situ degradation of membranes has been investigated by characterizing membranes both before testing in fuel cells and post-mortem after testing in fuel cells. Characterization was accomplished by means of ion-exchange capacity and infrared and Raman spectroscopic measurements. In addition, a rapid screening method for our ex-situ testing of the oxidative stability of proton-conducting membranes was developed in this work. Comparison of the initial screening test results concerning the oxidative stability of some perfluorinated, partially-fluorinated, and non-fluorinated membranes compare well qualitatively with the relative stability of these same membranes during their long-term testing in fuel cells.


2014 ◽  
Vol 2014 (HITEC) ◽  
pp. 000058-000060
Author(s):  
Tomas Hjort ◽  
Adolf Schöner ◽  
Andy Zhang ◽  
Mietek Bakowski ◽  
Jang-Kwon Lim ◽  
...  

Electrical characteristics of 4H-SiC Schottky barrier diodes, based on buried grid design are presented. The diodes, rated to 1200V/10A and assembled into high temperature capable TO254 packages, have been tested and studied up to 250°C. Compared to conventional SiC Schottky diodes, Ascatron's buried grid SiC Schottky diode demonstrates several orders of magnitude reduced leakage current at high temperature operation.


2019 ◽  
Vol 7 (1) ◽  
pp. 107-128 ◽  
Author(s):  
Odin Marc ◽  
Robert Behling ◽  
Christoff Andermann ◽  
Jens M. Turowski ◽  
Luc Illien ◽  
...  

Abstract. In active mountain belts with steep terrain, bedrock landsliding is a major erosional agent. In the Himalayas, landsliding is driven by annual hydro-meteorological forcing due to the summer monsoon and by rarer, exceptional events, such as earthquakes. Independent methods yield erosion rate estimates that appear to increase with sampling time, suggesting that rare, high-magnitude erosion events dominate the erosional budget. Nevertheless, until now, neither the contribution of monsoon and earthquakes to landslide erosion nor the proportion of erosion due to rare, giant landslides have been quantified in the Himalayas. We address these challenges by combining and analysing earthquake- and monsoon-induced landslide inventories across different timescales. With time series of 5 m satellite images over four main valleys in central Nepal, we comprehensively mapped landslides caused by the monsoon from 2010 to 2018. We found no clear correlation between monsoon properties and landsliding and a similar mean landsliding rate for all valleys, except in 2015, where the valleys affected by the earthquake featured ∼5–8 times more landsliding than the pre-earthquake mean rate. The long-term size–frequency distribution of monsoon-induced landsliding (MIL) was derived from these inventories and from an inventory of landslides larger than ∼0.1 km2 that occurred between 1972 and 2014. Using a published landslide inventory for the Gorkha 2015 earthquake, we derive the size–frequency distribution for earthquake-induced landsliding (EQIL). These two distributions are dominated by infrequent, large and giant landslides but under-predict an estimated Holocene frequency of giant landslides (> 1 km3) which we derived from a literature compilation. This discrepancy can be resolved when modelling the effect of a full distribution of earthquakes of variable magnitude and when considering that a shallower earthquake may cause larger landslides. In this case, EQIL and MIL contribute about equally to a total long-term erosion of ∼2±0.75 mm yr−1 in agreement with most thermo-chronological data. Independently of the specific total and relative erosion rates, the heavy-tailed size–frequency distribution from MIL and EQIL and the very large maximal landslide size in the Himalayas indicate that mean landslide erosion rates increase with sampling time, as has been observed for independent erosion estimates. Further, we find that the sampling timescale required to adequately capture the frequency of the largest landslides, which is necessary for deriving long-term mean erosion rates, is often much longer than the averaging time of cosmogenic 10Be methods. This observation presents a strong caveat when interpreting spatial or temporal variability in erosion rates from this method. Thus, in areas where a very large, rare landslide contributes heavily to long-term erosion (as the Himalayas), we recommend 10Be sample in catchments with source areas > 10 000 km2 to reduce the method mean bias to below ∼20 % of the long-term erosion.


2019 ◽  
Vol 40 (11) ◽  
pp. 1796-1799 ◽  
Author(s):  
Kwangeun Kim ◽  
Dong Liu ◽  
Jiarui Gong ◽  
Zhenqiang Ma

Sign in / Sign up

Export Citation Format

Share Document