Effect of MgF2 Additive on the Mechanical Properties in Hydroxyapatite / Zirconia Composites

2006 ◽  
Vol 510-511 ◽  
pp. 478-481 ◽  
Author(s):  
Sung Hwan Kim ◽  
Hyun Chan Lee ◽  
Hee Gon Bang ◽  
Sang Yeup Park

In this study, the effect of MgF2 additive on the mechanical properties of hydroxyapatite (HAp)/zirconia composites was investigated. As a fluoride additive, MgF2 was added to HAp/zirconia composites for the suppression of phase decomposition from HAp to tricalcium phosphate (TCP). Due to the dissolution of MgF2 at the phase decomposition temperature of HAp, the phase decomposition of non-stoichiometric HAp was suppressed. When MgF2 (5, 10 vol%) was added to HAp/zirconia composites, the decomposition of HAp was completely suppressed below 1400oC due to the ion substitution F- of for OH- in the HAp crystal structure. The flexural strength and Vickers hardness of composites was revealed more higher values compared with the MgF2-free composites.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1064
Author(s):  
Mohd Nor Faiz Norrrahim ◽  
Hidayah Ariffin ◽  
Tengku Arisyah Tengku Yasim-Anuar ◽  
Mohd Ali Hassan ◽  
Nor Azowa Ibrahim ◽  
...  

Residual hemicellulose could enhance cellulose nanofiber (CNF) processing as it impedes the agglomeration of the nanocellulose fibrils and contributes to complete nanofibrillation within a shorter period of time. Its effect on CNF performance as a reinforcement material is unclear, and hence this study seeks to evaluate the performance of CNF in the presence of amorphous hemicellulose as a reinforcement material in a polypropylene (PP) nanocomposite. Two types of CNF were prepared: SHS-CNF, which contained about 11% hemicellulose, and KOH-CNF, with complete hemicellulose removal. Mechanical properties of the PP/SHS-CNF and PP/KOH-CNF showed an almost similar increment in tensile strength (31% and 32%) and flexural strength (28% and 29%) when 3 wt.% of CNF was incorporated in PP, indicating that hemicellulose in SHS-CNF did not affect the mechanical properties of the PP nanocomposite. The crystallinity of both PP/SHS-CNF and PP/KOH-CNF nanocomposites showed an almost similar value at 55–56%. A slight decrement in thermal stability was seen, whereby the decomposition temperature at 10% weight loss (Td10%) of PP/SHS-CNF was 6 °C lower at 381 °C compared to 387 °C for PP/KOH-CNF, which can be explained by the degradation of thermally unstable hemicellulose. The results from this study showed that the presence of some portion of hemicellulose in CNF did not affect the CNF properties, suggesting that complete hemicellulose removal may not be necessary for the preparation of CNF to be used as a reinforcement material in nanocomposites. This will lead to less harsh pretreatment for CNF preparation and, hence, a more sustainable nanocomposite can be produced.


2012 ◽  
Vol 724 ◽  
pp. 343-346 ◽  
Author(s):  
Rong Zhen Liu ◽  
Qing Wen Duan ◽  
Wen Wei Gu ◽  
Hai Yun Jin ◽  
Shao Chun Xu ◽  
...  

Silicon was infiltrated into B4C preforms to fabricate B4C based composites ceramics at 1600 °C under vacuum circumstance. In this paper, silicon infiltration process was discussed by theoretical calculation. The volume expansion caused by reactions between silicon and boron carbide was about 89.1% from the calculation. In our study, the maximum density of B4C preform for the infiltration of silicon was about 1.5g/cm3 which was larger than theoretical result. The results of mechanical behavior showed that B4C based composites had excellent mechanical properties with a density lower than 2.6g/cm3, Vickers-hardness of this material was 27.2GPa, and this material showed a flexural strength of 349MPa and fracture toughness of 3.8 MPa*m1/2.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Nirdesh Ojha ◽  
Florian Zeller ◽  
Claas Mueller ◽  
Holger Reinecke

Electrical discharge machining (EDM) is widely used to manufacture complex shaped dies, molds and critical parts in conductive materials. With the help of an assisting electrode (AE), EDM process can be used to machine nonconductive ceramics. This paper evaluates the mechanical properties of three high-performance nonconductive ceramics (ZrO2, Si3N4, and SiC) that have been machined with the EDM process using AE. Mechanical properties such as Vickers hardness (HV 0.3), surface roughness (Sq), and flexural strength of the machined and the nonmachined samples are compared. The EDM process causes decrease in Vickers hardness, increase in surface roughness, and decrease in flexural strength.


2016 ◽  
Vol 697 ◽  
pp. 354-359
Author(s):  
Khalid Eltayeb ◽  
Dong Qin Jin ◽  
Young Hwan Han ◽  
Fei Chen ◽  
Qiang Shen ◽  
...  

Two kinds of powders of 3 mol. % yttria stabilized zirconia (3Y–TZP) with different particles sizes; one was 20 nm denoted by N whereas the other was 0.5 µm denoted by M, were mechanically mixed via ball milling machine using different amounts of N wt. % to obtain multiscale zirconia composite powder. Then the mixed powders were sintered by field assisted sintering technique (FAST). The effect of N content on the microstructure as well as on mechanical properties of zirconia is investigated. Results show that the microstructure of M completely surrounded by N emerged in zirconia composites, and tetragonal phase is presented in all the sintered samples. The obtained zirconia ceramics with 15 wt. % N own a highly dense structure (~ 99.9 % relative density) and high flexural strength of 813.59 MPa wherein a 15 % increase in flexural strength compared to zirconia ceramics without adding N, but the fracture toughness of the composites just lightly decreases. The improved flexural strength of the composites is caused by the multiscale effect.


2020 ◽  
Vol 9 (6) ◽  
pp. 716-725
Author(s):  
Guangqi He ◽  
Rongxiu Guo ◽  
Meishuan Li ◽  
Yang Yang ◽  
Linshan Wang ◽  
...  

AbstractShort-carbon-fibers (Csf) reinforced Ti3SiC2 matrix composites (Csf/Ti3SiC2, the Csf content was 0 vol%, 2 vol%, 5 vol%, and 10 vol%) were fabricated by spark plasma sintering (SPS) using Ti3SiC2 powders and Csf as starting materials at 1300 °C. The effects of Csf addition on the phase compositions, microstructures, and mechanical properties (including hardness, flexural strength (σf), and KIC) of Csf/Ti3SiC2 composites were investigated. The Csf, with bi-layered transition layers, i.e., TiC and SiC layers, were homogeneously distributed in the as-prepared Csf/Ti3SiC2 composites. With the increase of Csf content, the KIC of Csf/Ti3SiC2 composites increased, but the σf decreased, and the Vickers hardness decreased initially and then increased steadily when the Csf content was higher than 2 vol%. These changed performances (hardness, σf, and KIC) could be attributed to the introduction of Csf and the formation of stronger interfacial phases.


2015 ◽  
Vol 655 ◽  
pp. 45-48
Author(s):  
Kun Li ◽  
Hai Yan Chen ◽  
Qiu Shuang He ◽  
Li Hua Dong

(0, 5, 10, 15, 20) vol% CBN-WC/Co composites were consolidated by ball milling and the following hot-pressing sintering method. WC, Co and CBN powders were used as the starting materials. The effects of the CBN content on the density, microstructure and mechanical properties of CBN-WC/Co composites were investigated. The results showed that the CBN content had remarkable influence on the microstructure and mechanical properties of CBN-WC/Co Composites. With the increasing content of CBN, the density decrease, while Vickers hardness and flexural strength increased initially to the maximum values and then decreased at CBN 10 vol%. When 10 vol% CBN-WC/Co powders were hot-pressing sintered at 1350°C and 20MPa for 90 min, an excellent Vickers hardness of 19.8GPa was achieved, combining a flexural strength of 682MPa.


2012 ◽  
Vol 581-582 ◽  
pp. 548-551 ◽  
Author(s):  
Guo Quan Qi ◽  
Feng Shou Shangguan ◽  
Li Neng Yang ◽  
Qiang Bai ◽  
Gang Wu

Al2O3/NiAl composites were successfully fabricated by hot-press-assisted exothermic dispersion method with elemental powder mixtures of Ni, Al, NiO. The content of Al2O3 on the microstructures and mechanical properties of Al2O3/NiAl composites has been characterized. The results show that the Vickers hardness, flexural strength and fracture toughness of the composites increase with increasing Al2O3 content. When the Al2O3 content is 15 wt %, the flexural strength and the fracture toughness peaked at 765 MPa and 9.67 MPa•m 1/2, respectively. The improvement of mechanical properties is associated with a more homogeneous and finer microstructure developed by addition of Al2O3.


2017 ◽  
Vol 11 (2) ◽  
pp. 100-105 ◽  
Author(s):  
Song Wang ◽  
Yaping Wang ◽  
Kangning Sun ◽  
Xiaoning Sun

In this work, ?-tricalcium phosphate (?-TCP) was successfully prepared by the thermal transformation of amorphous calcium phosphate (ACP) precursor. ?-cyclodextrin (?-CD) was used for preparation of ACP precursor and played an important role in designing its special structure. The phase composition and microstructures of the obtained ?-TCP at different annealing temperature were analysed by X-ray diffraction and scanning electron microscope, and confirmed that ?-TCP can be prepared at 650?C for 3 h using ACP as precursor, which is much lower than the phase transition temperature of ?-TCP. Mechanical properties were tested 24 h after mixing the obtained ?-TCP with 30 wt.% of deionised water. The compressive strength and the flexural strength were 26.4MPa and 12.0MPa, respectively. The flexural strength was higher than that of ?-TCP prepared by other methods.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5642
Author(s):  
Branislava Petronijevic Sarcev ◽  
Sebastian Balos ◽  
Dubravka Markovic ◽  
Ivan Sarcev ◽  
Marija Vukcevic ◽  
...  

The objective of this work was to measure and correlate the degree of conversion (DC), mechanical properties and monomer elution from self-, dual- and light-cured core composites. Five samples of each of the following materials were prepared for each test: Clearfil (Core, Photo Core, Automix), Bisco (Core-Flo, Light-Core and Bis-Core). DC was determined using FTIR, compressive and flexural strength and modulus of elasticity using a universal testing machine and microhardness using Vickers hardness. Elution was measured using HPLC. One-way ANOVA with Tukey’s post-test and Pearson’s correlation were used to statistically analyze the data. DC of Clearfil-Dual (70.1%) and Clerafil-Photo (66.8%) were higher than Clearfil-Self (55.4%) and all Bisco materials (51.4–55.3%). Flexural strength of Clearfilwas higher than that of Bisco composites. The Microhardness of Clearfil-Dual (119.8VHN) and Clearfil-Photo (118.0VHN) were higher compared to other materials. The greatest elution was detected from self-cured materials. DC positively correlated to microhardness and compressive/flexural strength and negatively to BisGMA elution. Clearfil-Photo and Automix showed higher conversion, lower monomer elution and, generally, better mechanical properties. Self-cured composites should not be recommended for routine clinical use as their performance was inferior to dual- and light-cured composites. Microhardness may be used as an indicator of elution.


Sign in / Sign up

Export Citation Format

Share Document