Temperature Variation Effects on Current-Voltage (i-v) Characteristics of n-GaN Schottky Diode

2006 ◽  
Vol 517 ◽  
pp. 141-146
Author(s):  
Tarriq Munir ◽  
Azlan Abdul Aziz ◽  
Mat Johar Abdullah ◽  
Naser Mahmoud Ahmed

We focus in this paper the temperature variation effects on the current – voltage ( I-V) characteristics of n-GaN schottky diode. The diode was doped with carrier concentration 1*1013cm-3 and Pt electrode was used. The simulated current were obtained at temperatures from 50K to 500K and voltage up to 2Volt. We use the Srh (Schokley read hall), Cvt (Lombardi Model), Auger (Auger), Fermi (Fermi Dirac), Impact, Bgn (Bandgap Narrowing), Complete ioniz model to get the schottky rectifying current – voltage (I-V) characteristics.. We find that by increasing the temperature from 50K to 500K, the forward schottky rectifying current decreases from 2.7187 Amp to 0.383 Amp. while the forward turn – on voltage decreases. In reverse bias at low temperature the current is high and we increase the temperature the current decreases. The breakdown voltage decreases at higher temperature.

2006 ◽  
Vol 527-529 ◽  
pp. 1571-1574 ◽  
Author(s):  
Cole W. Litton ◽  
Ya.I. Alivov ◽  
D. Johnstone ◽  
Ümit Özgür ◽  
V. Avrutin ◽  
...  

Heteroepitaxial n-ZnO films have been grown on commercial p-type 6H-SiC substrates by plasma-assisted molecular-beam epitaxy, and n-ZnO/p-SiC heterojunction mesa structures have been fabricated and their photoresponse properties have been studied. Current-voltage characteristics of the structures had a very good rectifying diode-like behavior with a leakage current less than 2 x 10-4 A/cm2 at -10 V, a breakdown voltage greater than 20 V, a forward turn on voltage of ∼5 V, and a forward current of ∼2 A/cm2 at 8 V. Photosensitivity of the diodes, when illuminated from ZnO side, was studied at room temperature and photoresponsivity of as high as 0.045 A/W at -7.5 V reverse bias was observed for photon energies higher than 3.0 eV.


MRS Advances ◽  
2016 ◽  
Vol 1 (49) ◽  
pp. 3341-3347 ◽  
Author(s):  
Kamruzzaman Khan ◽  
Srikanth Itapu ◽  
Daniel G. Georgiev

ABSTRACTWe have demonstrated the NiO/ZnO based rectifying diode for LED application for substituting GaN for optoelectronics applications. We have systematically studied the current-voltage (I-V) characteristics of NiO based Metal-Insulator-Semiconductor (MIS) devices under forward and reverse bias for its use in LED applications. The results obtained show that the current increases exponentially with the voltage after a critical turn-on-voltage. The mechanism of carrier transport responsible for the rectifying behavior of the MIS structure as well as the light emission is discussed in relation to the experimental results.


2003 ◽  
Vol 765 ◽  
Author(s):  
Chao-Chun Wang ◽  
Chiao-Ju Lin ◽  
Mao-Chieh Chen

AbstractNiSi-silicided p+n shallow junctions are fabricated using BF2+ implantation into/through thin NiSi silicide layer (ITS technology) followed by low temperature furnace annealing (from 550 to 800°C). The NiSi film agglomerates following a thermal annealing at 600°C, and may result in the formation of discontinuous islands at a higher temperature. The incorporation of fluorine atoms in the NiSi film can retard the formation of film agglomeration and thus improve the film's thermal stability. A forward ideality factor of about 1.02 and a reverse current density of about 1nA/cm2 can be attained for the NiSi(310Å)/p+n junctions fabricated by BF2+ implantation at 35 keV to a dose of 5×1015cm-2 followed by a 650°C thermal annealing; the junction formed is about 60nm measured from the NiSi/Si interface. Activation energy measurements show that the reverse bias junction currents are dominated by the diffusion current, indicating that most of the implanted damages can be recovered after annealing at a temperature as low as 650°C.


2000 ◽  
Vol 640 ◽  
Author(s):  
Q. Zhang ◽  
V. Madangarli ◽  
Y. Gao ◽  
T. S. Sudarshan

ABSTRACTForward and reverse current – voltage (I–V) characteristics of N and P-type Schottky diodes on 6H-SiC are compared in a temperature range of room temperature to 550K. While the room temperature I–V characteristics of the N-type Schottky diode after turn-on is more or less linear up to ∼ 100 A/cm2, the I–V characteristics of the P-type Schottky diode shows a non-linear behavior even after turn-on, indicating a variation in the on-state resistance with increase in forward current. For the first time it is shown that at high current densities (> 210 A/cm2) the forward voltage drop across P type Schottky diodes is lower than that across N type Schottky diodes on 6H-SiC. High temperature measurements indicate that while the on-state resistance of N type Schottky diodes increases with increase in temperature, the on-state resistance of P type Schottky diodes decreases with increase in temperature until a certain temperature. While the N-type diodes seem to have soft breakdown characteristics, the P-type diodes exhibit more or less abrupt breakdown characteristics.


1963 ◽  
Vol s3-104 (65) ◽  
pp. 45-50
Author(s):  
SHIRLEY E. HAWKINS ◽  
J. F. DANIELLI

The effect of temperature variation on the multiplication rates of two strains of Amoeba proteus and the corresponding heterotransfer strains obtained by transplantation of nuclei between the ‘parent’ strains, has been studied. The two ‘parent’ strains multiply at a similar rate at 17° C but at different rates at 27° C and 11° C. The multiplication rates of the heterotransfers follow the cytoplasmic ‘parent’ at the low temperature and the nuclear ‘parent’ at the higher temperature.


2001 ◽  
Vol 703 ◽  
Author(s):  
Gyu-Tae Kim ◽  
Jörg Muster ◽  
Marko Burghard ◽  
Siegmar Roth

ABSTRACTV2O5 nanofibers showed the rectifying current-voltage characteristics under an asymmetric contact configuration at room temperature, indicating the formation of a Schottky diode. The ideality factors as a Schottky diode were estimated to be 6.1 at the forward bias and 1.4 at the reverse bias. The larger current at the reverse bias defined by the negative voltage at the metal electrode may originate from the contribution of the tunneling via field emission or thermionic field emission. The ultimate geometric size of nanofibers enhances the influence of the tunneling mechanism and modifies the nano-scale Schottky diode, requiring more understanding in designing the nano-scale electronic devices with the metal contacts.


2006 ◽  
Vol 517 ◽  
pp. 159-164
Author(s):  
Tarriq Munir ◽  
Azlan Abdul Aziz ◽  
Mat Johar Abdullah ◽  
Naser Mahmoud Ahmed

We focus on the epi layer carrier concentration variation effects to improve the current – voltage (I-V) characteristics of an n-GaN schottky diode. The carrier concentration of 1×10 15cm-3, 1×1016 cm−3, 1×1017 cm−3 were employed. The simulated current was obtained by forward biasing the device of up to 2Volt at room temperature using Pt electrode. The study was conducted by using Atlas/Blaze using various models such as Consrh (Concentration Dependent Shockley Read Hall), Cvt (Lombardi Model), Fermi (Fermi Dirac), Bgn (Bandgap Narrowing), Conmob (Concentration Dependent Mobility), Auger (Auger). We found that as the concentration increases the value of forward current also increase linearly when biased at maximum of 2 volts. The reverse bias characteristics at the same concentration of the simulated diode up to 100Volt were also determined. We found that at low carrier concentration the reverse leakage current is minimum and breakdown voltage is maximum. As the carrier concentration increases there is a linear relationship between reverse leakage current and epi layer doping carrier concentration. By analyzing the forward and reverse characteristics we conclude that in forward bias for low carrier concentration the diode shows schottky rectifying behavior while for higher carrier concentration the diode shows ohmic behavior. For higher carrier concentration there is a linear relationship between carrier concentration (n) and forward current. The reverse leakage current is minimum approaching an ideal value at n≤1×1015cm-3 and breakdown voltage is maximum at these values of concentration. Increasing the concentration from n≤1×1015cm-3 the value of reverse leakage current is approaching to the maximum value as a result breakdown voltage decreases. We conclude that for n-GaN schottky diode the ideal schottky rectifying behavior of I-V characteristics is obtained at carrier concentration of n≤ 1×1015cm-3 for the simulated diodes at different carrier concentration.


2002 ◽  
Vol 25 (3) ◽  
pp. 233-237
Author(s):  
K. F. Yarn

First observation of switching behavior is reported in GaAs metal-insulator-p-n+structure, where the thin insulator is grown at low temperature by a liquid phase chemical-enhanced oxide (LPECO) with a thickness of 100 Å. A significant S-shaped negative differential resistance (NDR) is shown to occur that originates from the regenerative feedback in a tunnel metal/insulator/semiconductor (MIS) interface andp-n+junction. The influence of epitaxial doping concentration on the switching and holding voltages is investigated. The switching voltages are found to be decreased when increasing the epitaxial doping concentration, while the holding voltages are almost kept constant. A high turn-off/turn-on resistance ratio up to105has been obtained.


1991 ◽  
Vol 241 ◽  
Author(s):  
L.-W. Yin ◽  
J. Ibbetson ◽  
M. M. Hashemi ◽  
W. Jiang ◽  
S.-Y. Hu ◽  
...  

ABSTRACTDC characteristics of a GaAs MISFET structure using low-temperature GaAs (LTGaAs) as the gate insulator were investigated. MISFETs with different gate to channel separation (d) were fabricated. The dependence of four important device parameters such as gate-drain breakdown voltage (VBR), channel current at zero gate bias (Idss), transconductance (gm), and gate-drain turn-on voltage (Von) on the gate insulator thickness were analyzed. It was observed that (a) in terms of Idss and gin, the LT-GaAs gate insulator behaves like an undoped regular GaAs layer and (b) in terms of VBR and Von, the LT-GaAs gate insulator behaves as a trap dominated layer.


Sign in / Sign up

Export Citation Format

Share Document