Epitaxial Growth of 4H-SiC on 4º Off-Axis (0001) and (000-1) Substrates by Hot-Wall CVD

2006 ◽  
Vol 527-529 ◽  
pp. 219-222 ◽  
Author(s):  
Keiji Wada ◽  
Tsunenobu Kimoto ◽  
Kimito Nishikawa ◽  
Hiroyuki Matsunami

4H-SiC layers have been homoepitaxially grown on 4°off-axis (0001) and (000-1) under various conditions by horizontal hot-wall CVD. We have investigated surface morphology and background doping concentration of the epi-layers on 4°off-axis substrates. Surface morphology grown on the (0001) Si-face showed strong step bunching under C-rich conditions. On the other hand, smooth surface morphology on the (000-1) C-face could be grown in the wide C/Si ratio range at 1600 °C. Site-competition behavior is clearly observed under low-pressure growth conditions on 4°off-axis (000-1) C-face, leading to a lowest doping concentration of 4.4x1014 cm-3.

2005 ◽  
Vol 483-485 ◽  
pp. 85-88 ◽  
Author(s):  
Keiji Wada ◽  
Tsunenobu Kimoto ◽  
Kimito Nishikawa ◽  
Hiroyuki Matsunami

4H-SiC layers have been homoepitaxially grown on off-axis 4H-SiC(000-1) under various conditions by horizontal hot-wall CVD. Improvement of surface morphology and reduction of background doping concentration have been achieved. Surface morphology grown on the (000-1) C face strongly depends on the C/Si ratio at 1500 °C, and hillock-like surface defects can be eliminate by increasing growth temperature to 1600 °C. Site-competition behavior is clearly observed under low-pressure growth conditions even on the (000-1) C face. The lowest doping concentration has been determined to be 6.0x1014 cm-3. A trial of high-speed growth on the (000-1) C face and deep level analysis are also discussed.


2009 ◽  
Vol 615-617 ◽  
pp. 93-96 ◽  
Author(s):  
Stefano Leone ◽  
Henrik Pedersen ◽  
Anne Henry ◽  
Shailaja P. Rao ◽  
Olof Kordina ◽  
...  

Homoepitaxial growth of 4H-SiC on on-axis Si-face substrates is reported using hydrogen chloride together with silane and ethylene. In this study, the main process parameters, such as temperature, Cl/Si ratio, C/Si ratio, Si/H2 ratio and ramp up conditions, were studied in detail to understand their effects on the growth mechanisms. Two different optimal epitaxial growth conditions were found. Silicon rich conditions and a high Cl/Si ratio were the key parameters to grow thick homoepitaxial layers with a very low background doping concentration and a growth rate higher than 20 μm/h.


2002 ◽  
Vol 742 ◽  
Author(s):  
T. Kimoto ◽  
K. Hashimoto ◽  
K. Fujihira ◽  
K. Danno ◽  
S. Nakamura ◽  
...  

ABSTRACTHomoepitaxial growth, impurity doping, and diode fabrication on 4H-SiC(11–20) and (03–38) have been investigated. Although the efficiency of nitrogen incorporation is higher on the non-standard faces than on (0001), a low background doping concentration of 2∼3×1014 cm-3 can be achieved. On these faces, boron and aluminum are less effectively incorporated, compared to the growth on off-axis (0001). 4H-SiC(11–20) epilayers are micropipe-free, as expected. More interestingly, almost perfect micropipe closing has been realized in 4H-SiC (03–38) epitaxial growth. Ni/4H-SiC(11–20) and (03–38) Schottky barrier diodes showed promising characteritics of 3.36 kV-24 mΩcm2 and 3.28 kV–22 mΩcm2, respectively. The breakdown voltage of 4H-SiC(03–38) Schottky barrier diodes was significantly improved from 1 kV to above 2.5 kV by micropipe closing.


2009 ◽  
Vol 615-617 ◽  
pp. 113-116 ◽  
Author(s):  
Kazutoshi Kojima ◽  
Hajime Okumura ◽  
Kazuo Arai

We have carried out detailed investigations on the influence of the growth conditions and the wafer off angle on the surface morphology of low off angle homoepitaxial growth. We found triangular features to be also serious problems on a 4 degree off 4H-SiC Si-face epitaxial layer surface. The control of the C/Si ratio by controlling the SiH4 flow rate is effective in suppressing the triangular features on 4 degree off Si-face homoepitaxial layer. As regards epitaxial growth on a vicinal off-axis substrate, the small off angle difference of a tenth part of a degree has an influence on the surface morphology of the epitaxial layer. This tendency depends on the face polarity and a C-face can be obtained that has a specular surface with a lower vicinal off angle than a Si-face. By controlling this off angle, a specular surface morphology without a bunched step structure could be obtained on a vicinal off angle 4H-SiC Si-face.


2010 ◽  
Vol 645-648 ◽  
pp. 99-102 ◽  
Author(s):  
Kazutoshi Kojima ◽  
Sachiko Ito ◽  
Junji Senzaki ◽  
Hajime Okumura

We have carried out detailed investigations of 4H-SiC homoepitaxial growth on vicinal off-angled Si-face substrates. We found that the surface morphology of the substrate just after in-situ H2 etching was also affected by the value of the vicinal-off angle. Growth conditions consisting of a low C/Si ratio and a low growth temperature were effective in suppressing macro step bunching at the grown epilayer surface. We also demonstrated epitaxial growth without step bunching on a 2-inch 4H-SiC Si-face substrate with a vicinal off angle of 0.79o. Ni Schottky barrier diodes fabricated on an as-grown epilayer had a blocking voltage above 1000V and a leakage current of less than 5x10-7A/cm2. We also investigated the propagation of basal plane dislocation from the vicinal off angled substrate into the epitaxial layer.


2011 ◽  
Vol 679-680 ◽  
pp. 59-62 ◽  
Author(s):  
Stefano Leone ◽  
Yuan Chih Lin ◽  
Franziska Christine Beyer ◽  
Sven Andersson ◽  
Henrik Pedersen ◽  
...  

The epitaxial growth at 100 µm/h on on-axis 4H-SiC substrates is demonstrated in this study. Chloride-based CVD, which has been shown to be a reliable process to grow SiC epitaxial layers at rates above 100 µm/h on off-cut substrates, was combined with silane in-situ etching. A proper tuning of C/Si and Cl/Si ratios and the combination of different chlorinated precursors resulted in the homoepitaxial growth of 4H-SiC on Si-face substrates at high rates. Methyltrichlorosilane, added with silane, ethylene and hydrogen chloride were employed as precursors to perform epitaxial growths resulting in very low background doping concentration and high quality material, which could be employed for power devices structure on basal-plane-dislocation-free epitaxial layers.


2016 ◽  
Vol 858 ◽  
pp. 57-60 ◽  
Author(s):  
Zhen Jiang Wang ◽  
Takahiko Kawaguchi ◽  
Kenta Murayama ◽  
Kenta Aoyagi ◽  
S. Harada ◽  
...  

We investigated the spatial distribution of carrier concentration in n-type 4H-SiC grown by the solution method from the peak frequency of the longitudinal optical phonon-plasmon coupled (LOPC) mode of the Raman spectra on the surface. The carrier concentration at the position of the smooth terrace was higher than the carrier concentration at the position where the macrosteps were formed. This indicates the nitrogen incorporation efficiently occurs on the smooth surface where the density of macrosteps is relatively low. The different incorporation of nitrogen depending on the surface morphology can be understood from the view point of the adsorption time of impurity on the terrace. The present result implies that the uniform surface morphology is necessary to achieve uniform doping concentration in SiC crystal.


2013 ◽  
Vol 740-742 ◽  
pp. 205-208
Author(s):  
Galyna Melnychuk ◽  
Siva Prasad Kotamraju ◽  
Yaroslav Koshka

In order to understand the influence of the Cl/Si ratio on the morphology of the low-temperature chloro-carbon epitaxial growth, HCl was added during the SiCl4/CH3Cl growth at 1300°C. Use of higher Cl/Si ratio allowed only modest improvements of the growth rate without morphology degradation, which did not go far beyond what has been achieved previously by optimizing the value of the input C/Si ratio. On the other hand, when the epitaxial growth process operated at too low or too high values of the input C/Si ratio, i.e., outside of the window of good epilayer morphology, any additional increase of the Cl/Si ratio caused improvement of the epilayer morphology. It was established that this improvement was due to a change of the effective C/Si ratio towards its intermediate values, which corresponded to more favorable growth conditions.


2008 ◽  
Vol 600-603 ◽  
pp. 127-130 ◽  
Author(s):  
Giuseppe Condorelli ◽  
Marco Mauceri ◽  
Giuseppe Pistone ◽  
L.M.S. Perdicaro ◽  
Giuseppe Abbondanza ◽  
...  

A process has been developed to grow multi-epy high doped structure. Trichlorosilane (TCS) and Ethylene have been used as precursor; Nitrogen (N2) and trimethylaluminum (TMA) as doping source. The SIMS and SCM analysis show that using this silicon precursor very abrupt N++/P+/N+ junctions (40-60 nm) can be obtained with low background doping concentration in a single epitaxial growth run.


Sign in / Sign up

Export Citation Format

Share Document