Microstructures, Tensile Properties and Forming Process of AZ31 Alloy Sheets

2007 ◽  
Vol 546-549 ◽  
pp. 241-244 ◽  
Author(s):  
Yun Qi Yan ◽  
H. Zhang ◽  
Q. Chen ◽  
H. Zhong ◽  
W.P. Weng

Rolling and punching techniques of AZ31 alloy were investigated in this paper. Various rolling experiments were carried out to make fine-grained Mg sheets. Punching tests were conducted at the temperatures range from 70 to 300 oC. The analysis revealed that there existed an excellent warm forming temperature for as-rolled AZ31 alloy. A warm deep punching tool setup using heating elements was designed and manufactured to produce the cell phone. Microstructures were observed using optical and scanning electron microscope equipped with EBSD. The textures in as-rolled and as-annealed specimens attribute to different mechanical properties along the various direction.

2012 ◽  
Vol 248 ◽  
pp. 26-30
Author(s):  
Xia Qu ◽  
Ying Chun Wang ◽  
Xing Wang Cheng ◽  
Shuang Zan Zhao ◽  
Shu Kui Li

An investigation was made to determine the effect of austenizing temperature on microstructure and tensile properties of Cr-W-Ni-alloy steel. Correlations of microstructure tensile properties and austenizing temperature parameters were established. Analysis of optical and scanning electron microscope show that there were a lot of coarse spherical undissolved carbides dispersed on the lath martensitic matrix in as-quenched specimens when austenized at 900°C while there were only very little nanometer carbides when austenized at 1000°C and 1100°C. The tensile properties show that austenizing temperature had large effect on the mechanical property of the Cr-W-Ni-alloy steel. Oil quenching after austenized at 1100°C for 26 minutes followed with tempering at 260°C for 3h, Cr-W-Ni-alloy steel obtained best strength and ductility match.


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


2020 ◽  
Vol 841 ◽  
pp. 114-118
Author(s):  
Marco Antonio Navarrete Seras ◽  
Francisco Javier Domínguez Mota ◽  
Elia Mercedes Alonso Guzmán ◽  
Wilfrido Martínez Molina ◽  
Hugo Luis Chávez García ◽  
...  

. Banks of stone materials from Michoacán, Mexico were characterized, since they are used in the construction of infrastructure in the area. With these materials are made hydraulic concrete mixtures or asphalt mixtures, foundations, paving stones and in restoration of historical monuments. The rocks analyzed and characterized, come from banks of volcanic stone materials and banks of crushed stone materials, which were subjected to mechanical tests such as uniaxial compression resistance (UCR), in addition was used scanning electron microscope (SEM), by means of which the characterization was carried out, obtaining morphological information of the material. The comparison of physical-mechanical properties with the elements they possess is important to estimate their behavior within ceramic matrices or as a structural element.


2015 ◽  
Vol 1113 ◽  
pp. 23-27 ◽  
Author(s):  
Alireza Fakhari ◽  
Abdul Razak Rahmat ◽  
Mat Uzir Wahit ◽  
Amirali Khalili ◽  
Zyad Salem Alsagayar

In this study a series of green thermoset resins have been produced from blending acrylated epoxidized palm oil (AEPO) and unsaturated polyester (UPE). The UPE/AEPO ratio was changed between 90/10 and 70/30 wt%. The curing behavior and morphology of hybrid systems were investigated by differential scanning calorimeter (DSC) and Scanning electron microscope (SEM). Moreover, studies on mechanical properties were performed by tensile and flexural tests. The results revealed that, these green thermoset resins exhibit thermo mechanical properties comparable to those of commercial unsaturated polyesters.


2013 ◽  
Vol 750-752 ◽  
pp. 671-674
Author(s):  
Rong Hua Zhang ◽  
Yong An Zhang ◽  
Bao Hong Zhu

In this paper, the Al-8.5Fe-1.3V-1.7Si alloys were fabricated by spray forming and extrusion process. The microstructure and mechanical properties of the alloy were investigated by means of metallographic, scanning electron microscope and tensile test. The results indicate that the tensile strength of the extrued alloys can reach 353MPa, the yield strength 300MPa, elongation 19.12%, at room temperature. At 250°C, the tensile strength of the extrued alloys can reach 221MPa, the yield strength 208MPa, elongation 13.33%.


2011 ◽  
Vol 236-238 ◽  
pp. 1949-1953 ◽  
Author(s):  
Ji Yan Liu ◽  
Xue Qing Liu

A biodegradable gradient polymeric membrane based on chitosan (CS) and polyvinyl alcohol (PVA) has been prepared by microwave technique. The composition and morphology variation along the thickness direction in membrane were measured by elemental analysis and scanning electron microscope (SEM). The tensile properties of CS/PVA gradient membrane were tested. Results showed that the content of either polymer shows a gradient variation along the thickness direction. SEM photographs exhibit that morphology also evolves gradually with the varying percentage ratio of two polymers. As a result of such variations in composition and structure, the mechanical properties on both sides exhibit a significant difference. Compared with conventional isotropic membrane, gradient membrane has improved mechanical properties.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiaojian Cao ◽  
Han Zhang ◽  
Jun Yu ◽  
Tianchong Yu ◽  
Yuxing Qing

Determination of the mechanical properties of rock containing pre-existing cracks under tension condition is of great significance to understand the failure process of rock in engineering. This paper presents the experimental results of sandstone containing pre-existing cracks under Brazilian compression. The characteristics of the microcracks were analyzed by a scanning electron microscope. The results show that the rock containing pre-existing cracks has an obvious anisotropic characteristic. When the crack inclination is 45°, the rock has the minimum tensile strength and the weakest axial deformation resistance.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1038
Author(s):  
Jie Deng ◽  
Kecheng Zhang ◽  
Dongsheng He ◽  
Hengqin Zhao ◽  
Rachid Hakkou ◽  
...  

Checking the presence of sesquioxide (Fe2O3, Al2O3) is helpful for its removal in advance. Therefore, the occurrence of sesquioxide in a mid-low grade calcareous-siliceous collophane ore (massive carbonate-apatite, also known as francolite) from Guizhou, China was determined by X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), field emission scanning electron microscope-energy dispersive X-ray spectrometry (FESEM-EDX) and Mineral Liberation Analyzer (MLA). The results show that iron mainly occurs as pyrite FeS2, goethite FeO(OH) and as substitution within dolomite Ca(Mg,Fe)(CO3)2, while aluminum is enriched in muscovite KAl2(AlSi3O10)(OH)2 and also found in apatite (F,CO3)CaPO4 and calcite CaCO3 due to isomorphism or adsorption. All these minerals are fine-grained, among which pyrite and goethite tend to be enriched in larger particles. Intergrowth is predominant in the six minerals’ locking. Pyrite is mainly intergrown with calcite, biotite and also included in apatite and muscovite, while the monomer pyrite appears as semi-automorphic fine grain with the liberation of 56.1%. Apatite particles are mainly intergrown with quartz and calcite. Most of goethite, dolomite, muscovite and calcite form intergrowth with apatite, with contents of 21.7%, 11.1%, 19.5% and 41%, respectively. The removal of pyrite, goethite, dolomite, muscovite and calcite in the ore is the key to reduce the contents of Fe2O3 and Al2O3. In the subsequent beneficiation, the ore must be fully ground. In addition to flotation, magnetic separation can also be considered to remove part of iron in ore. For the removal of aluminum from apatite, leaching method can be considered.


2020 ◽  
Vol 993 ◽  
pp. 53-59
Author(s):  
Zhen Yong Zhu ◽  
Kai Xiong ◽  
Jun Jie He ◽  
Shun Meng Zhang ◽  
Si Yong Xu ◽  
...  

Highly undercooled solidification experiments were carried out by melt purification combined with cyclic superheating method on Au-12 wt.%Ge eutectic alloy. The solidification structures of Au-12 wt.%Ge eutectic alloy under different undercoolings were also analyzed by using the scanning electron microscope (SEM). The experimental results revealed that the maximum undercooling could reach up to 102 K. The microstructure analysis showed that the coarse bulk eutectic existed in the solidification structure when the undercooling was less than 34 K. When the undercooling was larger than 34 K and less than 56 K, the solidification structure transformed into cellular eutectic. The coarse primary (α-Au) phase precipitated from the undercooled alloy melt when the undercooling was larger than 56 K. The volume fraction of the primary (α-Au) phase gradually increased with the increase of undercooling. In this paper, a method to regulate the solidification structure of Au-12 wt.%Ge eutectic alloy is proposed, which provides a new way to improve the solidification structure and has important guiding significance for the processing and forming process of Au-12 wt.%Ge eutectic alloy.


Sign in / Sign up

Export Citation Format

Share Document