Microstructures and Mechanical Properties of an Al-Cu-Li-Mg-Zr Alloy Containing Zn and Mn

2007 ◽  
Vol 546-549 ◽  
pp. 995-1002 ◽  
Author(s):  
Yong Lai Chen ◽  
Jin Feng Li ◽  
Yu Wei Zhang ◽  
Zi Qiao Zheng

An Al-3.43Cu-1.28Li-0.49Mg-0.12Zr containing 0.62Zn and 0.29Mn was designed and the microstructures and mechanical properties of the alloy with various heat treatments were investigated. The precipitates of the alloy consist of T1 (Al2CuLi), θ′ (Al2Cu) σ (Al5Cu6Mg2) and δ′ (Al3Li). As solution temperature is changed from 485°C to 530°C, the solution degree of alloying elements in alloy increased, the amount of T1 in the alloy aged at 160°C for 18 h increased and that of θ′ is decreased, resulting in an increase of strength. After solution treatment at 530°C, the alloy aged for 18 h at 145°C is mainly strengthened by G P zones, and a little amount of T1 precipitates. As aging temperature is increased to 160°C and 175°C, the strength increased, due to the sufficient precipitation of σ and T1. The smaller amount of T1 in the alloy aged at 190°C is consistent with its lower strength. Meanwhile, it is found that the σ precipitate does not coarsen as aging temperature increases in the range from 160°C to 190°C.

2011 ◽  
Vol 306-307 ◽  
pp. 548-552
Author(s):  
Jun Li ◽  
Yan Wei Sui ◽  
Ai Hui Liu ◽  
Xin Zhao ◽  
Zhi Sun

Al-Cu alloy castings are obtained in the vertical centrifugal field. The effects of solution treatment on the microstructures and mechanical properties of Al-Cu alloy casting were studied by OM, micro hardness tester and room temperature tension and compression test. The results show that, the strength, micro hardness and elongation percentage of Al-Cu alloy casting increase firstly and then decrease as the solution temperature increases, and the mechanical properties reach the maximum values as the solution temperature increases to 530°C. As solution time increasing, the mechanical properties of Al-Cu alloy casting increase firstly and then decrease. When the solution time is up to 6 hours, the mechanical properties reach maximum value.


2020 ◽  
Vol 39 (1) ◽  
pp. 501-509
Author(s):  
Wan-Liang Zhang ◽  
Wen-Tao Hao ◽  
Wei Xiong ◽  
Guo-Zheng Quan ◽  
Jiang Zhao ◽  
...  

AbstractThe solution-aging treatment parameters, including solution temperature, cooling rate and aging temperature, have significant influences on the microstructures and comprehensive mechanical properties of titanium alloy. In this work, the detailed microevolution behaviors of Ti–10V–2Fe–3Al alloy under different solution and aging conditions have been investigated through a series of heat-treatment experiments. The results of solution-treatment experiments reveal that the content of αp-phase is reduced to zero as the solution temperature is raised to a certain α → β critical transformation point. Recrystallized β-grains can be observed at the solution temperature of 820°C. In addition, the cooling way (air cooling or water cooling) has little influence on the microevolution behaviors for this alloy during the solution-treatment process. As for the solution-aging-treatment experiments, the results reveal that αs-phases are precipitated from the supersaturated β-phase, and the fraction of αs-phase increases with increasing aging temperature. However, the precipitated α-grains intend to coalesce and coarsen as the aging temperature raises above 510°C. Therefore, the advocated solution-aging-treatment program is solution treatment at 820°C with air cooling followed by aging treatment at 510°C with air cooling.


2020 ◽  
Vol 326 ◽  
pp. 09002
Author(s):  
Zhiqiang Xie ◽  
Zhihong Jia ◽  
Lin Lin ◽  
Shunyan Lin ◽  
Qing Liu

In this work, effect of solution treatments on the microstructures and mechanical properties of industrial 7050 aluminum alloy thick plate was investigated by tensile test, scanning electron microscopy (SEM), energy dispersive spectrometry (EDS) and transmission electron microscopy (TEM). The results show that the area fraction of residual phases decreases with increasing solution temperature from 475°C to 500°C. The overheating phenomenon identified by compound melting ball and crystal separating phase was observed at a temperature of 485°C or above. The compound melting balls are composed of S(Al2CuMg) phase dissolved with Zn atoms and Al matrix. The crystal separating phase is consisted of Al2Cu phase and the amorphous structure containing solute atom Mg. The maximum tensile strength of 529 MPa was obtained for the alloy solution treated at 475°C for 3h followed by peak aging at 120°C for 24h.


2014 ◽  
Vol 937 ◽  
pp. 182-186
Author(s):  
Quan An Li ◽  
Lei Lei Chen ◽  
Wen Chuang Liu ◽  
Xing Yuan Zhang ◽  
Hui Zhen Jiang

The influence of the solution treatment (at the temperature of 500-520°C for 4-12 h) on microstructures and mechanical properties of Mg-Gd-Y-Zr alloy was investigated by means of optical microscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Vickers hardness measurement. The as-cast alloy contains a microstructure consisting of α-Mg matrix, Mg5Gd phase and Mg24Y5phase. With increasing solution temperature and time, the quantity of the primary particles (Mg5Gd and Mg24Y5) in the alloy continually decreased, and the degree of recrystallization gradually increased, which result in the gradual decrease of the Vickers hardness of the solution-treated alloys.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 790 ◽  
Author(s):  
Changping Tang ◽  
Kai Wu ◽  
Wenhui Liu ◽  
Di Feng ◽  
Xuezhao Wang ◽  
...  

The effects of Gd, Y content on the microstructure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy were investigated using hardness measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and uniaxial tensile testing. The results indicate that the alloys in as-cast condition mainly consist of α-Mg matrix and non-equilibrium eutectic Mg5.05RE (RE = Gd, Y, Nd). After solution treatment, the non-equilibrium eutectics dissolved into the matrix but some block shaped RE-rich particles were left at the grain boundaries and within grains. These particles are especially Y-rich and deteriorate the mechanical properties of the alloys. Both the compositions of the eutectic and the block shaped particle were independent of the total Gd, Y content of the alloys, but the number of the particles increases as the total Gd, Y content increases. The ultimate tensile strength increases as the total Gd, Y content decreases. A Mg-5.56Gd-3.38Y-1.11Nd-0.48Zr alloy with the highest ultimate tensile strength of 280 MPa and an elongation of 1.3% was fabricated. The high strength is attributed to the age hardening behavior and the decrease in block shaped particles.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3798
Author(s):  
Meng Sun ◽  
Dong Li ◽  
Yanhua Guo ◽  
Ying Wang ◽  
Yuecheng Dong ◽  
...  

In order to reduce the cost of titanium alloys, a novel low-cost Ti-3Al-5Mo-4Cr-2Zr-1Fe (Ti-35421) titanium alloy was developed. The influence of heat treatment on the microstructure characteristics and mechanical properties of the new alloy was investigated. The results showed that the microstructure of Ti-35421 alloy consists of a lamina primary α phase and a β phase after the solution treatment at the α + β region. After aging treatment, the secondary α phase precipitates in the β matrix. The precipitation of the secondary α phase is closely related to heat treatment parameters—the volume fraction and size of the secondary α phase increase when increasing the solution temperature or aging time. At the same solution temperature and aging time, the secondary α phase became coarser, and the fraction decreased with increasing aging temperature. When Ti-35421 alloy was solution-treated at the α + β region for 1 h with aging surpassing 8 h, the tensile strength, yield strength, elongation and reduction of the area were achieved in a range of 1172.7–1459.0 MPa, 1135.1–1355.5 MPa, 5.2–11.8%, and 7.5–32.5%, respectively. The novel low-cost Ti-35421 alloy maintains mechanical properties and reduces the cost of materials compared with Ti-3Al-5Mo-5V-4Cr-2Zr (Ti-B19) alloy.


2017 ◽  
Vol 750 ◽  
pp. 3-8
Author(s):  
Dragoş Cristian Achiţei ◽  
Petrică Vizureanu ◽  
Mirabela Georgiana Minciună ◽  
Nicanor Cimpoeşu ◽  
Bogdan Istrate

The paper presents aspects of structure modifications and properties for a CuZn alloy, after the appliance of heat treatments, at their specific parameters. The samples subjected to analysis, coming from cast bar, from which have been taken standard samples, with specific dimensions for experiments.Nonferrous alloys are subject frequently to annealing, quenching and tempering. The annealing follows the homogenization of structure after casting. The quenching followed by tempering is a spectacular modality to modify the mechanical properties for numerous nonferrous alloys.The characteristics of alloys have highlighted by experiments, using standard samples specific to the requests. The determination of alloying elements was made on optical spectrometer. The researches by SEM and optical microscopy, confirm the improvement of properties by obtaining uniform structures according to the applied thermal processing.


2014 ◽  
Vol 915-916 ◽  
pp. 576-582 ◽  
Author(s):  
H. C. Wu ◽  
B. Yang ◽  
Ming Xian Zhang ◽  
Sheng Long Wang ◽  
Y. Z. Shi

The effect of forging and solution temperature on the microstructure and mechanical properties of 316LN stainless steel has been investigated by optical microscope, tensile testing machine and scanning electron microscope (SEM). The results show that the average grain size of the steel was refined from 150μm to 70μm after forging and solution treatment. With increasing solution temperature, the tensile strength and yield strength decreased. On the contrary, the elongation of the steel increased with increasing solution temperature except at 1200°C. The tensile strength of the samples forged at 1100°C is better than those of the samples forged at 1000 and 1200°Cafter solution treatment. Tensile fracture morphologies observation showed that all the specimens have ductile fracture morphologies. With increasing solution temperature, the toughness of the steel becomes better and better except at 1200°C. Both the microstructure and mechanical properties of the 316LN stainless steel have been improved after forging at 1100°C and following by solution treatment at 1150°C.


Sign in / Sign up

Export Citation Format

Share Document