Metals Microstructure Improving under Hard Cyclic Viscoplastic Deformation

2008 ◽  
Vol 584-586 ◽  
pp. 361-366
Author(s):  
Lembit A. Kommel

Annealed pure copper was subjected to equal-channel angular pressing (ECAP) by route Bc for different passes number. Tensile test specimens were manufactured and subjected to hard cyclic viscoplastic (HCV) deformation by means of the materials testing installation Instron 8516 in strain control regime at room temperature. The specimens were cyclically deformed with a frequency of 0.5Hz at different strain amplitudes, step-by-step increased from ±0.05 to ±2.5% for 30 cycles, up to seven test series in this study. The microstructure of ECAP and HCV deformed samples were characterized by optical- and transmission electron microscope, X-ray diffraction, tensile- and hardness testing methods. The ECAP processed metal has mainly elongated subgrains with low-angle grain boundaries and texture, oriented in direction of metal flow during latest pressing. We demonstrate that during HCV deformation the dislocations density of ECAP processed UFG copper was decreased. The ECAP texture was reoriented under cyclic load applied as elongated subgrains were jointed to small pieces under this same angle to axis as texture before. The grain- and crystallite sizes were decreased, which were accompanied with dislocation ribbons forming nearby new formed high-angle grain boundaries. This paper builds on knowledge that the combined treatment by ECAP and followed HCV deformation enable to improve UFG microstructure and ductility with lowering the strength and hardness of UFG metals due to the lower dislocation density while coarse grained copper exhibits increasing the strength and hardness.

2008 ◽  
Vol 584-586 ◽  
pp. 988-993 ◽  
Author(s):  
Bernhard Wielage ◽  
Daniela Nickel ◽  
Thomas Lampke ◽  
Gert Alisch ◽  
Harry Podlesak ◽  
...  

The corrosion behaviour of the aluminium alloy, AA6082, processed by equal-channel angular pressing (ECAP) after different passes (route E, room temperature) was studied in comparison to the coarse-grained counterpart. The results of the electrochemical investigations (cyclovoltammetry; electrochemical impedance spectroscopy, EIS) are presented in correlation with the microstructure before and after the corrosion examinations. Both, chemical (precipitations, phases) and physical (dislocations, high-angle grain boundaries, grain size, low-angle grain boundaries) inhomogeneities characterize the microstructure of this commercially used Al-Mg-Si alloy. Results indicate an improved resistance against pitting of the ECAP material expressed by a reduced pitting density of up to 50 % and lower pit depths. EIS measurements and microstructural examinations (scanning electron microscopy, transmission electron microscopy, 3D topography measurement) confirm that ECAP modifies the number, size and distribution of these inhomogeneities, which leads to a more favourable corrosion behaviour.


2015 ◽  
Vol 641 ◽  
pp. 286-293
Author(s):  
Beata Leszczyńska-Madej ◽  
Maria W. Richert ◽  
Agnieszka Hotloś ◽  
Jacek Skiba

The present study attempts to apply Equal-Channel Angular Pressing (ECAP) to 99.99% pure copper. ECAP process was realized at room temperature for 4, 8 and 16 passes through route BC using a die having angle of 90°. The microstructure of the samples was investigated by means both light and transmission electron microscopy. Additionally the microhardness was measured and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns misorientation was determined. There were some different types of bands in the microstructure after deformation. The shear bands, bands and in the submicron range the microshear bands and microbands are a characteristic feature of the microstructure of copper. Also characteristic was increasing of the number of bands with increasing of deformation and mutually crossing of the bands. The intersection of a bands and microbands leads to the formation of new grains with the large misorientation angle. The measured grain/subgrain size show, that the grain size is maintained at a similar level after each stage of deformation and is equal to d = 0.25 – 0.32 μm.


2008 ◽  
Vol 584-586 ◽  
pp. 393-398 ◽  
Author(s):  
Nayar Lugo ◽  
Jose María Cabrera ◽  
Núria Llorca-Isern ◽  
C.J. Luis-Pérez ◽  
Rodrigo Luri ◽  
...  

Pure commercial Cu of 99,98 wt % purity was processed at room temperature by Equal- Channel Angular Pressing (ECAP) following route Bc. Heavy deformation was introduced in the samples after a considerable number of ECAP passes, namely 1, 4, 8, 12 and 16. A significant grain refinement was observed by transmission electron microscopy (TEM). Tensile and microhardness tests were also carried out on the deformed material in order to correlate microstructure and mechanical properties. Microhardness measurements displayed a quite homogeneous strain distribution. The most significative microstructural and mechanical changes were introduced in the first ECAP pass although a gradual increment in strength and a slight further grain refinement was noticed in the consecutive ECAP passes.


2008 ◽  
Vol 584-586 ◽  
pp. 380-386 ◽  
Author(s):  
Jens Ribbe ◽  
Guido Schmitz ◽  
Y. Amouyal ◽  
Yuri Estrin ◽  
Sergiy V. Divinski

The radiotracer technique was applied for measuring grain boundary diffusion of Ni in ultrafine grained (UFG) copper materials with different nominal purities and in a Cu—1wt.%Pb alloy. The UFG specimens were prepared by equal channel angular pressing at room temperature. The stability of the microstructure was studied by focused ion beam imaging. Grain boundary diffusion of the 63Ni radioisotope was investigated in the temperature interval from 293 to 490K under the formal Harrison type C kinetic conditions. Two distinct short-circuit diffusion paths were observed. The first (relatively slow) path in the UFG materials corresponds unambiguously to relaxed high-angle grain boundaries with diffusivities which are quite similar to those in the respective coarse-grained reference materials. The second path is characterized by significantly higher diffusivities. The experimental data are discussed to elucidate the contribution of nonequilibrium grain boundaries in the deformed materials. Alternative contributions of other shortcircuit diffusion paths cannot be ruled out, particularly for the Cu-Pd alloy.


1983 ◽  
Vol 5 (4) ◽  
pp. 219-237 ◽  
Author(s):  
J. D. Fitz Gerald ◽  
M. A. Etheridge ◽  
R. H. Vernon

Coarse-grained, deformed albite occurs in veins within a blueschist from the Cazadero region, California. In some grains, deformation and recrystallization are concentrated in narrow shear zones less than 50 μm wide. We have examined the substructural progression across these zones by transmission electron microscopy (TEM), in an attempt to determine the details of the dynamic recrystallization mechanism. The misorientation across subgrain and recrystallized grain boundaries has been determined by analysis of electron diffraction patterns.Dynamic recrystallization apparently proceeded by the following stages: 1) the formation of a well-ordered substructure from a more tangled, cell-like array, 2) increasing misorientation between subgrains, 3) rapid growth of subgrains at a misorientation between 3° and 5° to produce new “grains” with straighter grain boundaries and lower internal dislocation densities and 4) continued deformation and rotation of the recrystallized grains with local grain-boundary migration to maintain relatively equiaxed shapes. The ultimate recrystallized structure in the narrow deformation zones consists of grains misoriented by between 5° and at least 30°, most of them containing a well-developed substructure.The combination of subgrain growth and rotation explains a number of features common to dynamically recrystallized minerals. The smaller subgrains present prior to growth and also within recrystallized grains form a population distinct from the larger subgrains and recrystallized grains of approximately equal size, which are those observed in an optical microscope. The smaller subgrains are visible only in TEM. Individual recrystallized grains may remain through substantial straining, rotating in response to dislocation and sub-boundary motion within them, thus preserving and even enhancing the crystallographic fabric (texture). The retention of an initial recrystallized grain population throughout significant continuing deformation may explain the absence of strain softening in some recent experimental studies.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2043
Author(s):  
Hailong Jia ◽  
Yinan Piao ◽  
Kaining Zhu ◽  
Chaoran Yin ◽  
Wenqiang Zhou ◽  
...  

It is well known that ultrafine grained and nanocrystalline materials show enhanced strength, while they are susceptible to thermally induced grain coarsening. The present work aims to enhance the thermal stability of ultrafine Al grains produced by equal channel angular pressing (ECAP) via dynamically precipitation. Detailed characterization by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) has been carried out to reveal the microstructural evolution during both ECAP and post-ECAP annealing. After five passes of ECAP, both Al-8Zn and Al-6Bi-8Zn alloys show an ultrafine grain structure together with dynamic precipitated nanoscale Zn particles along grain boundaries. Upon annealing at 200 °C, ultrafine grains in the Al-8Zn and Al-6Bi-8Zn alloys show a remarkable thermal stability compared to the Al-8Bi alloy, which is mainly due to the presence of nanoscale Zn precipitates along grain boundaries. The present work reveals that nanoscale Zn particles have a positive effect on preserving the ultrafine grains during annealing, which is useful for the design of UFG Al alloys with improved thermal stability.


2006 ◽  
Vol 503-504 ◽  
pp. 805-810 ◽  
Author(s):  
Bernhard Mingler ◽  
V.V. Stolyarov ◽  
Michael Zehetbauer ◽  
Wolfgang Lacom ◽  
Hans Peter Karnthaler

Conventional coarse grained (CG) commercial pure (CP) Ti Grade 2 was studied after cold rolling (CR) at room temperature, and after equal channel angular pressing (ECAP) at 450° C followed by CR, by transmission electron microscopy (TEM) methods. CR of the CG material leads to a microstructure showing initially twins with (0112) type and later subgrains separated by lowangle grain boundaries. CR carried out after ECAP yields the fragmentation of fine grains (300 – 800 nm) mostly bounded by high-angle boundaries into elongated subgrains (~ 100 nm). It was shown with in-situ annealing experiments in the TEM that this microstructure is thermally stable up to a temperature of 450° C. Tensile tests showed that the combination of ECAP with CR has the potential to produce at the same time high strength (941 MPa) and high ductility (16.7%).


2008 ◽  
Vol 273-276 ◽  
pp. 75-80 ◽  
Author(s):  
Jakub Čížek ◽  
Ivan Procházka ◽  
Bohumil Smola ◽  
Ivana Stulíková ◽  
Vladivoj Očenášek ◽  
...  

Precipitation effects in ultra fine grained (UFG) lightweight Mg-based alloys were studied in the present work by means of positron lifetime spectroscopy, transmission electron microscopy, and microhardness. The UFG samples with grain size around 100 nm were fabricated by high pressure torsion (HPT). The UFG structure contains a significant volume fraction of grain boundaries and exhibits a high number of lattice defects (mainly dislocations) introduced by severe plastic deformation during the HPT processing. A high dislocation density and volume fraction of grain boundaries enhance the long range diffusion of solute elements. Moreover, dislocations and grain boundaries act as nucleation centers for precipitates. As a consequence, the precipitation effects are facilitated in the UFG alloys compared to the conventional coarse-grained samples. This phenomenon was examined in this work by comparison of the precipitation sequence in Mg alloys with UFG structure and solution treated coarse-grained alloys.


2010 ◽  
Vol 667-669 ◽  
pp. 235-240 ◽  
Author(s):  
Petr Král ◽  
Jiří Dvořák ◽  
Marie Kvapilová ◽  
Milan Svoboda ◽  
Viktor Beneš ◽  
...  

Experiments were conducted on extremely coarse-grained pure copper to evaluate the effect of equal-channel angular pressing (ECAP) on microstructure evolution in the as-pressed state and after creep exposure using various stereological methods. The microstructure formed by severe plastic deformation is an unusual structure which can be hardly characterized only by the mean grain size especially after low number of ECAP passes. The purpose of this paper is a detailed examination of (sub)boundaries and grain boundaries in the microstructures of the pressed material. The inhomogeneity of deformed microstructures is also evaluated. The detailed description of ECAP microstructures should contribute to the better understanding of mechanical properties of the pressed materials.


2018 ◽  
Vol 383 ◽  
pp. 96-102 ◽  
Author(s):  
Vladimir V. Popov ◽  
Gerrit Reglitz ◽  
Evgeniy V. Shorohov ◽  
E.N. Popova ◽  
Alexey V. Stolbovsky ◽  
...  

Formation of microstructure in Ni under equal-channel angular pressing (ECAP) and dynamic channel-angular pressing (DCAP), its thermal stability and diffusion properties of grain boundaries are investigated. Grain boundary diffusion in the ultrafine-grained Ni is found to be significantly faster than in the coarse-grained Ni, which indicates a 'non-equilibrium' (deformation-modified) state of grain boundaries in the former. The effect of non-equilibrium state of grain boundaries on the level of internal stresses is analyzed.


Sign in / Sign up

Export Citation Format

Share Document