Monotonic Strength Properties of Siberian Yellow Pine

2008 ◽  
Vol 599 ◽  
pp. 137-142
Author(s):  
Pentti O. Kettunen ◽  
Taina Vuoristo ◽  
Terho Kaasalainen

Strength values of the sapwood of Siberian yellow pine were measured in a system with orthogonal coordinates along the axial, radial, and tangential directions of the cell structure. Highest strength was the axial normal strength and lowest the tangential normal strength. The difference between these two values was 87-fold. Shear strength values remained between the two normal strength values. The highest shear strength appeared in tangential direction across the reinforcing fibers, i.e., on the plane perpendicular to the axial direction. Lowest shear strength appeared in tangential direction on the plane perpendicular to radial direction. The variations are due to orientation of cells and of fiber reinforcement in the cell wall laminas, especially in the middle layer of the secondary cell wall.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1093G-1094
Author(s):  
Russell L. Weiser

Stayman apples are predisposed to cracking. Trees whose trunks were scored and foliage sprayed with GA4+7, NAA 800, and Vapor Guard had significantly fewer apples crack than controls. The skin strength and stretch distance were the same for control and treated apples. However, slices of treated apple expanded significantly more than control apples when immersed in distilled water for 45 minutes. During this treatment the amount of water taken up was not significantly different, which may indicate the difference lies in the cell structure. Hypodermal cells of control apples appear to be more elongated and have thicker cell walls than treated apples. Cell wall sugar and amino acid components will be measured to see if this discrepancy can be attributed to cell wall structural properties. These results suggest that stayman cracking occurs when the expansion of the hypodermic cannot keep pace with expansion of the fruit. It is further hypothesized that this difference is due to a difference in cell wall composition and consequent effect on wall extensibility.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1093g-1094 ◽  
Author(s):  
Russell L. Weiser

Stayman apples are predisposed to cracking. Trees whose trunks were scored and foliage sprayed with GA4+7, NAA 800, and Vapor Guard had significantly fewer apples crack than controls. The skin strength and stretch distance were the same for control and treated apples. However, slices of treated apple expanded significantly more than control apples when immersed in distilled water for 45 minutes. During this treatment the amount of water taken up was not significantly different, which may indicate the difference lies in the cell structure. Hypodermal cells of control apples appear to be more elongated and have thicker cell walls than treated apples. Cell wall sugar and amino acid components will be measured to see if this discrepancy can be attributed to cell wall structural properties. These results suggest that stayman cracking occurs when the expansion of the hypodermic cannot keep pace with expansion of the fruit. It is further hypothesized that this difference is due to a difference in cell wall composition and consequent effect on wall extensibility.


1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.


2021 ◽  
Vol 13 (15) ◽  
pp. 8164
Author(s):  
Brian E. Bautista ◽  
Lessandro E. O. Garciano ◽  
Luis F. Lopez

There are limited published studies related to the mechanical properties of bamboo species in the Philippines. In this study, the shear strength properties of some economically viable bamboo species in the Philippines were properly characterized based on 220 shear test results. The rationales of selecting this mechanical property are the following: (1) Shear strength, parallel to the fiber, has the highest variability among the mechanical properties; and (2) Shear is one of the governing forces on joint connections, and such connections are the points of failure on bamboo structures when subjected to extreme loading conditions. ISO 22157-1 (2017) test protocol for shear was used for all tests. The results showed that Bambusa blumeana has the highest average shear strength, followed by Gigantochloa apus, Dendrocalamus asper, Bambusa philippinensis, and Bambusa vulgaris. However, comparative analysis, using One-way ANOVA, showed that shear strength values among these bamboo species have significant differences statistically. A linear regression model is also established to estimate the shear strength of bamboo from the physical properties. Characteristic shear strength is also determined using ISO 12122-1 (2014) for future design reference.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yi-Jen Sun ◽  
Fan Bai ◽  
An-Chi Luo ◽  
Xiang-Yu Zhuang ◽  
Tsai-Shun Lin ◽  
...  

AbstractThe dynamic assembly of the cell wall is key to the maintenance of cell shape during bacterial growth. Here, we present a method for the analysis of Escherichia coli cell wall growth at high spatial and temporal resolution, which is achieved by tracing the movement of fluorescently labeled cell wall-anchored flagellar motors. Using this method, we clearly identify the active and inert zones of cell wall growth during bacterial elongation. Within the active zone, the insertion of newly synthesized peptidoglycan occurs homogeneously in the axial direction without twisting of the cell body. Based on the measured parameters, we formulate a Bernoulli shift map model to predict the partitioning of cell wall-anchored proteins following cell division.


2020 ◽  
Vol 5 (1) ◽  
pp. 711-725
Author(s):  
Sutrisno ◽  
Eka Mulya Alamsyah ◽  
Ginanjar Gumilar ◽  
Takashi Tanaka ◽  
Masaaki Yamada

AbstractThe properties of the laminated veneer lumber (LVL) composed of the boiled veneer of Rubberwood (Hevea brasiliensis) using polyvinyl acetate (PVAc) adhesives in various cold-pressing time and various conditioned time with loaded and unloaded were studied. Five-ply LVL was produced by boiling veneer at 100°C for 90 min as pretreatment and cold-pressing time at 12 kgf cm−2 for 1.5, 6, 18, and 24 h then conditioned at 20°C and 65% relative humidity (RH) with loaded (12 kgf cm−2) and unloaded for 7 days as physical treatment. Especially for the delamination test, the specimens were immersed at 70 ± 3°C for 2 h and dried in the oven at 60 ± 3°C for 24 h; then, the specimens were solidified at room temperature (20°C and 65% RH) with loaded (12 kgf cm−2) and unloaded for 7, 10, 12, and 14 days. To determine the performance of LVL, the density, moisture content (MC), delamination, modulus of elasticity (MOE), modulus of rupture (MOR), horizontal shear strength, and formaldehyde emission tests were conducted according to the Japanese Agricultural Standard (JAS 2008) for structural LVL. The MOE and MOR values were significantly influenced by the physical treatment, however, neither to horizontal shear strength nor to formaldehyde emission. The best performance of LVL has resulted from unloaded LVL with cold-pressed time for 18 h; the MOE and MOR values were 9,345.05 ± 141.61 N mm−2 and 80.67 ± 1.77 N mm−2, respectively. The best value of the horizontal shear strength was obtained from the LVL with 18 h cold-pressing time and conditioned with loaded (13.10 ± 1.47 N mm−2) and unloaded (12.23 ± 1.36 N mm−2). The percentage of delamination values decreased with an increase in the cold-pressing time and conditioning time. The lowest value of delamination (19.06%) was obtained from the LVL with 24 h cold-pressing time and conditioned with loaded for 14 days. Except the delamination test, all other properties fulfilled the JAS.


Revista CERES ◽  
2016 ◽  
Vol 63 (5) ◽  
pp. 646-652
Author(s):  
Magda Andréia Tessmer ◽  
Beatriz Appezzato-da-Glória ◽  
Ricardo Alfredo Kluge

ABSTRACT ʻGiomboʼ is one of most cultivated persimmon cultivars in Brazil. It is a late-harvest cultivar and requires treatment for astringency removal. The aim of this study was to evaluate the efficiency of ethanol and the effect of harvest time on reducing astringency, physicochemical and anatomical characteristics of 'Giombo' persimmon. Two experiments were carried out, one in each growing season, with five treatments corresponding to exposure to 1.70 mL kg-1ethanol for 0, 12, 24, 36 and 48 hours. At the end of the growing season (2011) the fruits achieved the astringency index and levels of soluble tannins suitable for consumption in 24 hours, and at the beginning of the growing season (2012) in 36 hours, indicating that the efficiency of the treatment is related to harvest time and ethanol exposure time. Astringency removal with ethanol affects the cell structure with accumulation of substances inside the cells and in intercellular spaces, resulting in the degradation of the parenchyma cell wall. To avoid such damage and maintain fruit quality, it is recommended the combination of low ethanol doses with less ethanol exposure time.


1984 ◽  
Vol 30 (106) ◽  
pp. 348-357 ◽  
Author(s):  
W.G. Nickling ◽  
L. Bennett

AbstractThe effect of ice content and normal load on the shear strength characteristics of a frozen coarse granular debris was investigated. 31 shear tests were carried out in a modified shearbox allowing a sample temperature of (–1.0 ± 0.2)° C and a load rate of 9.63 × 10−4 cm/min. The tests showed that as the ice content of the frozen debris was increased from 0% (under-saturated) to 25% (saturated), sample shear strength was markedly increased. In contrast, sample shear strength was reduced as ice content was increased from 25% (saturated) to 100% (supersaturated). The changes in shear strength with increasing ice content were attributed directly to changes in internal friction and the cohesive effects of the pore ice. The shear tests also indicate that shear strength increases with increasing normal load up to a critical limit. Above this limit, dilatancy is suppressed causing the shear strength to decrease or remain relatively constant with increased normal load.The stress-strain curves of the 31 tests indicated that samples with higher ice contents tended to reach peak strength (τP) with less displacement during shear. Moreover, the difference between τp and τr (residual strength) was lowest for pure polycrystalline ice and highest for ice-saturated samples. The Mohr-Coulomb failure envelopes displayed very distinctive parabolic curvilinearity. The degree of curvature is thought to be a function of ice creep at low normal loads and particle fracture and crushing at high normal loads.


Sign in / Sign up

Export Citation Format

Share Document