Hydrogen Storage in Nitrides by the Use of Ammonia as a Hydrogen Carrier

2010 ◽  
Vol 654-656 ◽  
pp. 2819-2822
Author(s):  
Hayao Imamura ◽  
Naotaka Shimomura ◽  
Keisuke Watanabe ◽  
Kenichi Tanaka ◽  
Fumiya Nakamura ◽  
...  

Hydrogen storage by calcium nitride or magnesium nitride has been undertaken by the use of ammonia, in which the possibility of ammonia as a vector for hydrogen carriers has been studied. When the calcium imide ornitride obtained by thermal decomposition of calcium amide dispersed on active carbon (AC) was brought into contact with ammonia gas (300 Torr) at room temperature, NH3 uptake readily occurred. When the sample after NH3 uptake was heated, the absorbed ammonia was released in the form of hydrogen and nitrogen. The ammonia is possibly absorbed in the form of the decomposed state in the imide ornitride. This type of hydrogen storage has been extensively studied and characterized.For magnesium nitride, ammonia was absorbed and desorbed without the decomposition.

2006 ◽  
Vol 6 (1) ◽  
pp. 221-226 ◽  
Author(s):  
Yonghua Leng ◽  
Huaiyu Shao ◽  
Yuntao Wang ◽  
Masaaki Suzuki ◽  
Xingguo Li

Pure nickel carbide (Ni3C) nanoparticles with particle diameters of 40 nm have been prepared by thermal decomposition of nickel formate in the presence of oleic acid and oleyl amine. The co-existence of active nickel and active carbon plays an important role in the formation of metastable Ni3C. Ni3C powder decomposes at 770 K in an N2 atmosphere to yield nickel and carbon. While in an H2 atmosphere, Ni3C powder is converted into Ni at 627 K. In addition, Ni3C nanoparticles exhibit superparamagnetism and are easier to magnetize at room temperature due to their good crystallinity and few defects.


1992 ◽  
Vol 57 (11) ◽  
pp. 2302-2308
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Emerich Erdös

The kinetics of the reaction of solid sodium carbonate with sulfur dioxide depends on the microstructure of the solid, which in turn is affected by the way and conditions of its preparation. The active form, analogous to that obtained by thermal decomposition of NaHCO3, emerges from the dehydration of Na2CO3 . 10 H2O in a vacuum or its weathering in air at room temperature. The two active forms are porous and have approximately the same specific surface area. Partial hydration of the active Na2CO3 in air at room temperature followed by thermal dehydration does not bring about a significant decrease in reactivity. On the other hand, if the preparation of anhydrous Na2CO3 involves, partly or completely, the liquid phase, the reactivity of the product is substantially lower.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jolanta Prywer ◽  
Rafał Kruszyński ◽  
Marcin Świątkowski ◽  
Andrzej Soszyński ◽  
Dariusz Kajewski ◽  
...  

AbstractIn this paper, we present the first experimental evidence of the piezoelectric nature of struvite (MgNH4PO4·6H2O). Using a single diffusion gel growth technique, we have grown struvite crystals in the form of plane parallel plates. For struvite crystals of this shape, we measured the piezoelectric coefficients d33 and d32. We have found that at room temperature the value of piezoelectric coefficient d33 is 3.5 pm/V, while that of d32 is 4.7 pm/V. These values are comparable with the values for other minerals. Struvite shows stable piezoelectric properties up to the temperature slightly above 350 K, for the heating rate of 0.4 K/min. For this heating rate, and above this temperature, the thermal decomposition of struvite begins, which, consequently, leads to its transformation into dittmarite with the same non-centrosymmetric symmetry as in case of struvite. The struvite-dittmarite transformation temperature is dependent on the heating rate. The higher the heating rate, the higher the temperature of this transformation. We have also shown that dittmarite, like struvite exhibits piezoelectric properties.


2020 ◽  
Vol 21 (3) ◽  
pp. 781
Author(s):  
Isabel Iglesias ◽  
José A. Huidobro ◽  
Belén F. Alfonso ◽  
Camino Trobajo ◽  
Aránzazu Espina ◽  
...  

The hydrothermal synthesis and both the chemical and structural characterization of a diamin iron phosphate are reported. A new synthetic route, by using n-butylammonium dihydrogen phosphate as a precursor, leads to the largest crystals described thus far for this compound. Its crystal structure is determined from single-crystal X-ray diffraction data. It crystallizes in the orthorhombic system (Pnma space group, a = 10.1116(2) Å, b = 6.3652(1) Å, c = 7.5691(1) Å, Z = 4) at room temperature and, below 220 K, changes towards the monoclinic system P21/n, space group. The in situ powder X-ray thermo-diffraction monitoring for the compound, between room temperature and 1100 K, is also included. Thermal analysis shows that the solid is stable up to ca. 440 K. The kinetic analysis of thermal decomposition (hydrogenated and deuterated forms) is performed by using the isoconversional methods of Vyazovkin and a modified version of Friedman. Similar values for the kinetic parameters are achieved by both methods and they are checked by comparing experimental and calculated conversion curves.


Sign in / Sign up

Export Citation Format

Share Document