Internal Stress and Grain Size Effect on the Phase Stabilization of ZrO2 Deposited by MOCVD

2011 ◽  
Vol 675-677 ◽  
pp. 1201-1204
Author(s):  
Zhe Chen ◽  
Bin Wang ◽  
Nathalie Prud’homme ◽  
Sheng Li Ma ◽  
Vincent Ji ◽  
...  

Zirconia (ZrO2) films were deposited by metal-organic chemical vapor deposition (MOCVD) on {1 0 0} Si single crystal using Zr(thd)4 precursors. The thickness of obtained films is typically of 3.5 μm. The samples have been characterized by Field-Emission-Gun Scanning Electron Microscopy (FEG-SEM) for morphologic and microstructure study, and by X-ray Diffraction (XRD) for crystalline structure. The microstructure analysis showed that unexpected stable single tetragonal phase preferentially grew in low temperature area. According to the literature, the tetragonal phase stabilization is related to the crystalline size and the internal compressive stress. To analyze the effect of grain size and internal stress on the phase transformation, the thermal annealing were carried out in different temperatures and internal stress was measured by XRD method.

2009 ◽  
Vol 1202 ◽  
Author(s):  
Mohammad Ahmad Ebdah ◽  
Martin E. Kordesch ◽  
Andre Anders ◽  
Wojciech M. Jadwisienczak

AbstractIn this work, europium implanted InGaN/GaN SL with a fixed well/barrier thickness ratio grown by metal-organic chemical-vapor deposition (MOCVD) on GaN/(0001) sapphire substrate were investigated. The as-grown and Eu ion implanted InGaN/GaN SLs were annealed at different temperatures ranging from 600°C to 950°C in nitrogen ambient. The quality of the SL interfaces in undoped and implanted structures has been investigated by X-ray diffraction (XRD) at room temperature. The characteristic satellite peaks of SLs were measured for the (0002) reflection up to the second order in the symmetric Bragg geometry. The XRD simulation spectrum of the as-grown SL agrees well with the experimental results. The simulation results show x=0.06 atomic percent the InGaN well sub-layers, with thicknesses of 2.4 and 3.3 nm for single InGaN well and GaN barrier, respectively. It was observed that annealing of the undoped SL does not significantly affect the interfacial quality of the superstructure, whereas, the Eu ion implanted InGaN/GaN SL undergo partial induced degradation. Annealing the implanted SLs shows a gradual improvement of the multilayer periodicity and a reduction of the induced degradation with increasing the annealing temperature as indicated by the XRD spectra.


1998 ◽  
Vol 541 ◽  
Author(s):  
P. Lu ◽  
S. He ◽  
F. X. Li ◽  
Q. X. Jia

AbstractConductive RuO2 thin films have been grown epitaxially on (100) MgO and (100) LaAlO3 substrates by metal-organic chemical vapor deposition(MOCVD) at different temperatures. The microstructural properties of the RuO2 films have been studied using x-ray diffraction and scanning electron microscopy. Different growth and microstructure properties were observed for the films deposited on the two substrates. The films on MgO are epitaxial at deposition temperatures as low as 350°C, and consist of two variants with an orientation relationship given by (110) RuO2 /(100) MgO and [001] RuO2//[011]MgO. The films on LaAlO3, on the other hand, are epitaxial only at deposition temperatures of 600°C and above, and contain four variants with an orientation relationship given by (200)RuO2//(100)LaAlO3 and [011] RuO2//[011] LaAlO3. The observed microstructures of epitaxially grown films can be explained based on geometric considerations for the films and substrates.


2013 ◽  
Vol 746 ◽  
pp. 369-373 ◽  
Author(s):  
Yu Lv ◽  
Wei Mi ◽  
Cai Na Luan ◽  
Jin Ma

Ga2O3thin films were grown on sapphire m-cut () and r-cut () orientations substrates at different temperatures by metal-organic chemical vapor deposition. Structural and optical properties of the Ga2O3films were investigated including the influence by annealing for the obtained films. The Ga2O3films on sapphire () and () substrate areα-Ga2O3. The crystallization of the films decreases after annealed at 900 °C. The average transmittance of the samples in the visible wavelength range was over 86% and the optical band gapEgwas about 4.755.15 eV. TheEgof the samples increases after annealing at 900 °C.


1998 ◽  
Vol 541 ◽  
Author(s):  
Nan Chen ◽  
G. R. Bai ◽  
O. Auciello ◽  
R. E. Koritala ◽  
M. T. Lanagan

AbstractSingle-phase polycrystalline PbZrO3 (PZ) thin films, 3000-6000 A thick, have been grown by metal-organic chemical vapor deposition (MOCVD) on (111)Pt/Ti/SiO2/Si substrates at ≍525°C. X-ray diffraction analysis indicated that the PZ films grown on (111)Pt/Ti/SiO2/Si (Pt/Tgi/Si) showed preferred pseudocubic (110) orientation. In contrast, PZ films grown on 150 A thick PbTiO3 (PT) template layers exhibited a pseudocubic (100) preferred orientation, and PZ films deposited on TiO2 template layers consisted of randomly oriented grains. The PZ films grown on Pt/Ti/Si with or without templates exhibited dielectric constants of 120-200 and loss tangents of 0.01-0.0. The PZ films with (110) orientation exhibited an electric-field-inducedtransformation from the antiferroelectric phase to the ferroelectric phase with a polarization of ≍34 µC/cm2, and the energy that was stored during switching was 7.1 J/cm3. The field needed to excite the ferroelectric state and that needed to revert to the antiferroelectric state were 50 and 250 kV/cm, respectively. Relationships between the MOCVD processing and the film microstructure and properties are discussed.


2022 ◽  
Vol 43 (1) ◽  
pp. 012303
Author(s):  
Xiujun Hao ◽  
Yan Teng ◽  
He Zhu ◽  
Jiafeng Liu ◽  
Hong Zhu ◽  
...  

Abstract We demonstrate a high-operating-temperature (HOT) mid-wavelength InAs/GaSb superlattice heterojunction infrared photodetector grown by metal–organic chemical vapor deposition. High crystalline quality and the near-zero lattice mismatch of a InAs/GaSb superlattice on an InAs substrate were evidenced by high-resolution X-ray diffraction. At a bias voltage of –0.1 V and an operating temperature of 200 K, the device exhibited a 50% cutoff wavelength of ~ 4.9 μm, a dark current density of 0.012 A/cm2, and a peak specific detectivity of 2.3 × 109 cm·Hz1/2 /W.


2001 ◽  
Vol 08 (05) ◽  
pp. 527-532 ◽  
Author(s):  
D. H. ZHANG ◽  
S. W. LOH ◽  
C. Y. LI ◽  
P. D. FOO ◽  
JOSEPH XIE ◽  
...  

This paper reports the effect of a flash copper layer, sandwiched between a copper film deposited by metal-organic chemical vapor deposition (MOCVD) and a TaN barrier metal, on copper diffusion through TaN barrier to Si substrate after rapid thermal annealing at different temperatures. It is found that for the structure of CVD Cu/TaN/SiO 2/ Si , which has no flash Cu layer, Cu could diffuse through the 25-nm-thick TaN barrier layer at an annealing temperature of 600°Cfor 180 s. However, by incorporating a flash Cu layer between the CVD Cu film and the TaN barrier, Cu diffusion can be significantly reduced. In addition to Cu , the out-diffusion of Si and oxygen, and the interaction between them can also be reduced by the incorporated flash Cu layer, due likely to the change of the crystallographic orientation of the CVD Cu films.


2015 ◽  
Vol 1738 ◽  
Author(s):  
Andrew J. Clayton ◽  
Stuart J. C. Irvine ◽  
Vincent Barrioz ◽  
Alessia Masciullo

ABSTRACTAn inline metal organic chemical vapor deposition system was used to deposit tin sulfide at temperatures >500 °C. Tetramethyltin was used as the tin source and diethyldisulfide as the sulfur source. An overhead injector configuration was used delivering both precursors directly over the substrate. The tin and sulfur precursors were premixed before injection to improve chemical reaction in the gas phase. Growth temperatures 500 – 540 °C were employed producing films with approximate 1:1 stoichiometry of Sn and S detected by energy dispersive x-ray spectroscopy. X-ray diffraction showed there to be mixed phases with Sn2S3 present with SnS.


Sign in / Sign up

Export Citation Format

Share Document