Thermal Analysis of Dedicated Computer Based on ANSYS

2011 ◽  
Vol 697-698 ◽  
pp. 277-281
Author(s):  
Y.R. Zhang ◽  
L. Gao ◽  
S.J. Li ◽  
H.X. Bi

After creating the three-dimensional models of dedicated computer, models can be smoothly put into ANSYS through interface between Pro/E and ANSYS. By selecting the grid cells, setting parameters of material properties, dividing grids, applying load and boundary conditions and post-processing, the temperature contours of the whole case and its key components are got. Compared with the test results, it was verified that the feasibility and rationality of carrying out thermal simulation by ANSYS software, providing a theoretical basis for the designers to optimize dedicated computer case.

2014 ◽  
Vol 681 ◽  
pp. 100-105
Author(s):  
Jian Li ◽  
Xu Dong ◽  
Zhong Cai Zheng ◽  
Yan Gao ◽  
Zhen Ting Jiang ◽  
...  

The Line Inspection Robot is used to detect the line's defects when it walks on the overhead lines. It will be swinging under its own vibration and the action of wind , due to the robot arms hanging on overhead line alone ,so the dynamic characteristics of robot arm cannot be ignored. In this paper, we establish three-dimensional models of the line inspection robot's manipulator with double manipulators of antisymmetric structure, and conduct solving and post-processing of statics and modal analysis after meshing and applying constraints. The manipulator's low frequencies and vibration modals are drawn, so we can provide a theoretical basis for the reasonable optimization improvements to the line inspection robot's manipulator with double manipulators of antisymmetric structure.


2021 ◽  
Vol 20 (7) ◽  
pp. 48-61
Author(s):  
Pavel V. Chistyakov ◽  
Ekaterina N. Bocharova ◽  
Ksenia A. Kolobova

This article provides a detailed account of the process of scanning, post-processing and further manipulation of three-dimensional models obtained with structured light scanners. Purpose. The purpose of the study is determined by the need for national archaeologists to learn the methods of three-dimensional modeling for the implementation of scientific research corresponding to international standards. Unfortunately, this direction in national archaeology began to develop in a relatively recent time and there is a lag in the application of three-dimensional modeling of national archaeology compared to the world level. Results. Any archaeological, experimental or ethnographic artifact can be used for three-dimensional scanning. To perform post-processing of three-dimensional models it is necessary to carry out primary scanning of an artifact by one of the existing algorithms. The algorithm for creating models, their positioning, simplification, saving in various formats and export is described. The main sequence of 3D models post-processing includes: processing of groups of scanned projections (their cleaning and alignment), creation of artifact model and processing/rectification of the resulting model using special software. Conclusion. As a result of correct implementation of the algorithm, the researcher receives a scaled model completely corresponding to the original artifact. Obtaining a scalable, texture-free three-dimensional model of the artifact, which fully corresponds to the original and exceeds a photograph in the quality of detail transfer, allows a scientist to conduct precise metric measurements and any procedures of non-invasive manipulation of the models. The ability to access a database of three-dimensional models of archaeological collections greatly simplifies the work of archaeologists, especially in situations when country borders are closed.


2011 ◽  
Vol 421 ◽  
pp. 369-372
Author(s):  
Jie Shao Xin

This paper made an analysis on the process of turbine blade, and completed the three-dimensional design of milling and cutting fixture used in the process on the UG software. After the stress analysis of the workpiece is completed, the author made a finite element analysis on both the blades and the main parts of the fixture with the help of ANSYS software, the results of the research provide theoretical basis for the development of reasonable processing technology and reliable workpiece assembly.


2011 ◽  
Vol 243-249 ◽  
pp. 6040-6043
Author(s):  
Yi Hong Guo ◽  
Gang Ling Hou ◽  
Nan Guo

This paper presents three-dimensional numerical simulation of UHPFRC-NSC composite beam with Diana. An elastic-plastic fracture model is proposed to describe material properties of UHPFRC. Differing from other concrete constitutive model, this one considers strain hardening in tension because of characteristic of UHPFRC. A total strain rotating crack model is used to describe material properties of NSC. The results of relevant push-out tests are used to describe the shear force-slip relationship of shear connection between UHPFRC girder and NSC slab. The numerical investigation focuses on the evaluation of load-deflection behavior, failure mode and shear connection. The agreement of test results and numerical results indicates the reliability of model.


2000 ◽  
Vol 123 (1) ◽  
pp. 47-51 ◽  
Author(s):  
Mark E. Zobitz ◽  
Zong-Ping Luo ◽  
Kai-Nan An

A methodology was developed for determining the compressive properties of the supraspinatus tendon, based on finite element principles. Simplified three-dimensional models were created based on anatomical thickness measurements of unloaded supraspinatus tendons over 15 points. The tendon material was characterized as a composite structure of longitudinally arranged collagen fibers within an extrafibrillar matrix. The matrix was formulated as a hyperelastic material described by the Ogden form of the strain energy potential. The hyperelastic material parameters were parametrically manipulated until the analytical load-displacement results were similar to the results obtained from indentation testing. In the geometrically averaged tendon, the average ratio of experimental to theoretical maximum indentation displacement was 1.00 (SD: 0.01). The average normalization of residuals was 2.1g (SD: 0.9g). Therefore, the compressive material properties of the supraspinatus tendon extrafibrillar matrix were adequately derived with a first-order hyperelastic formulation. The initial compressive elastic modulus ranged from 0.024 to 0.090 MPa over the tendon surface and increased nonlinearly with additional compression. Using these material properties, the stresses induced during acromional impingement can be analyzed.


2013 ◽  
Vol 462-463 ◽  
pp. 592-596
Author(s):  
Liang Chen ◽  
Cheng Zhong Hu ◽  
Chun Ling Jiang

A novel multi-finger power SiGe heterojunction bipolar transistor (HBT) with segmented emitter fingers and non-uniform emitter finger spacing was proposed to improve the thermal stability. Thermal simulation for a five-finger power SiGe HBT with novel structure was conducted with ANSYS software. Three-dimensional temperature distribution on emitter fingers was obtained. Compared with traditional emitter structure, the maximum junction temperature of novel structure reduce significantly from 429.025K to 414.252K, the thermal resistance reduce from 159K/W to 141K/W, temperature distribution were significantly improved. Thermal stability was effective enhanced.


2021 ◽  
pp. 105678952098359
Author(s):  
Qingsong Wei ◽  
Dan Yang ◽  
Bohong Gu ◽  
Baozhong Sun

This paper investigates the ballistic impact on Kevlar multilayer three-dimensional angle-interlock woven fabric (3DAWF) by proposing the mesoscale geometrical model for the numerical simulation. Multilayer 3DAWF is designed to yarn level configuration by utilizing the membrane elements to reduce computational time and enhance accuracy. The general-purpose finite element code LS-DYNA is employed to predict the ballistic behavior of multilayer 3DAWF under ballistic penetration. The velocity evolution of the projectile, energy absorption mechanism, and failure morphology of multilayer 3DAWF are predicted and validated by the impact test results. It is found that the mesoscale model based on strain rate material models accurately reproduces the ballistic test results. Numerical simulations with strain rate effects in the yarn material properties have a higher precise prediction in the projectile's velocity, energy absorption mechanism, and failure morphology compared with traditional FEA. This study demonstrated the importance of the strain rate effect of material properties in simulating the ballistic impact on the fabric and dramatically improves the ballistic impact simulation's accuracy on fabric.


2017 ◽  
Vol 1 (2) ◽  
pp. 269-281
Author(s):  
Carlo Battini ◽  
Elena Sorge

The work presented wants to show how different techniques of expeditious relief can be combined together in order to better describe the subject studied. Techniques of digital projection as laser scanner, topography and Structure from Motion can be used simultaneously and interact with each other to create a rich database of colorimetric and metrics information. Methodologies that, at the same time, present the peculiarities and errors of peculiar relief of the technology employed.The case study examined in this type of research is the discovery of the amphitheater of Volterra. Discovered in July 2015 during the phases of reclamation of a stream, is located close to Porta Diana and a few hundred meters from the Roman Theater discovered in the last century. An excavation campaign undertaken Between October and November 2015 has allowed us to bring to light the crests of the supporting walls of the structure, revealing the presence of the three orders and a depth of about ten meters.The step of post processing has finally seen the use of three-dimensional models acquired both for the creation of images metrics necessary to the study of the stratigraphic units, both for studying a mobile application, 3D models and data of the excavation, easy to use for transmitting the information collected.  


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2381 ◽  
Author(s):  
Renxiu Han ◽  
Guoxi Li ◽  
Jingzhong Gong ◽  
Meng Zhang ◽  
Kai Zhang

In order to effectively improve the dynamic characteristics of the fixed metal joint interface, it is important to establish a correct equivalent model of the metal joint interface. In this paper, three equivalent methods for simulating the metal joint interface are analyzed, including the virtual material method, spring damping method, finite element method, and verification by modal experiment. First, according to the contact mechanics model of the constructed metal joint interface, the physical properties of the three-dimensional models of the fixed joint interface are assigned in the ANSYS software. Then, three methods are used for the modal analysis and compared with a modal experiment. The results show that the modal shapes of the three theoretical methods are consistent with those of the experimental modes. The first five natural frequencies obtained by the virtual material method are closest to the experimental natural frequencies, and the errors are within 10%. The errors of the other two methods are between 9% and 39%. Therefore, the virtual material method is a better equivalent method of the metal joint interface.


2015 ◽  
Vol 713-715 ◽  
pp. 938-941
Author(s):  
Liang Chen

A novel multi-finger power SiGe heterojunction bipolar transistor (HBT) with non-uniform segmented emitter fingers and non-uniform emitter finger spacing was proposed to improve the thermal stability. Thermal simulation for a five-finger power SiGe HBT with novel structure was conducted with ANSYS software. Three-dimensional temperature distribution on emitter fingers was obtained. Compared with non-uniform segmented emitter fingers structure and non-uniform emitter finger spacing structure, the maximum junction temperature of novel structure reduce significantly, the thermal resistance reduce, temperature distribution were significantly improved. Thermal stability was effective enhanced.


Sign in / Sign up

Export Citation Format

Share Document