Characterization of WELD Heat Affected Zone of ASTM A709 HPS 100W

2012 ◽  
Vol 706-709 ◽  
pp. 1474-1480
Author(s):  
Avidipto Biswas ◽  
Philip Nash ◽  
Sreeharsha Lalam ◽  
Steve Jansto

The weld heat affected zone (HAZ) of HPS 100W was characterized in terms of microstructure and mechanical properties. HAZ simulation was carried out in a GLEEBLE 3500 along with in-situ dilation tests at different peak temperatures of 850°C, 1100°C, 1300°C and 1350°C with heat input of 2kJ/mm. Subsequently, impact toughness data were obtained at different temperatures by means of Charpy tests. The microstructures were characterized using optical microscope, SEM and TEM to correlate the structure-property relationship of the HAZ. Under the tested conditions, all the simulated HAZs exhibited higher impact toughness than the base metal.

2014 ◽  
Vol 85 ◽  
pp. 401-410 ◽  
Author(s):  
L.W. Wang ◽  
Z.Y. Liu ◽  
Z.Y. Cui ◽  
C.W. Du ◽  
X.H. Wang ◽  
...  

2021 ◽  
Vol 66 (1) ◽  
pp. 23-38
Author(s):  
Singh Pratap ◽  
Judit Kovácsb

The development of high strength aluminium alloy has revolutionized the automotive industry with innovative manufacturing and technological process to provide high-performance components, weight reduction and also diversified the application field and design consideration for the automotive parts that work under severe conditions, but the selection of proper production parameters is most challenging task to get excellent results. Growing industrial demand of aluminium alloys led to the development of new welding technologies, processes and studies of various parameters effects for its intended purposes. The microstructural changes lead to loss of hardening and thereby mechanical strength in the HAZ welded joint even though the base materials are heat treatable and precipitation hardened. So, our goal is to analyse HAZ softening and analyse the sub-zones as a function of the parameter. In this paper, the influence of weld heat cycle on the heat-affected zone (HAZ) is physically simulated for Tungsten Inert Gas Welding (TIG) using Gleeble 3500 thermomechanical simulator for three different automotive aluminium alloy (AA5754-H22, AA6082-T6 & AA7075-T6) plate of 1 mm thickness. In order to simulate the sub-zones of the heat-affected zone, samples were heated to four different HAZ peak temperatures (550 °C, 440 °C, 380 °C and 280 °C), two linear heat input (100 J/mm and 200 J/mm) by the application of Rykalin 2D model. A series of experiments were performed to understand the behaviour, which make it possible to measure the objective data on the basis of the obtained image of the aluminium alloys tested with heat-affected zone tests in a Gleeble 3500 physical simulator. The main objective is to achieve the weldability of three different automotive aluminium alloys and their comparison based on the welding parameters like heat input. Further, the investigation of HAZ softening and microstructure of the specimens were tested and analysed using Vicker's hardness test and optical microscope respectively. The paper focuses on HAZ softening analysis of different grades of aluminium alloys for automotive application.


2018 ◽  
Vol 910 ◽  
pp. 35-40
Author(s):  
Eswaran Elango ◽  
Somasundaram Saravanan ◽  
Krishnamorthy Raghukandan

This study focuses on effect of post weld heat treatment (PWHT) on interfacial and mechanical properties of Al 5052-SS 316 explosive clad with copper interlayer at varied loading ratios and inclination angles. The use of interlayer is proposed for the control of additional kinetic energy dissipation and to alleviate the formation of intermetallic compounds at the interface. The Al-Steel clads are subjected to PWHT at varied temperatures (300°C-450°C) for 30 minutes and the results are presented. The microstructural characterization of as-clad and PWHT samples is observed by an optical microscope and Scanning Electron Microscope (SEM). Maximum hardness is obtained at the interface of the as-clad and PWHT samples. Increase in PWHT temperature enhances the tensile strength of the composite, whereas, the tensile strength decreases at 300°C due to the diffusion of Al and Cu elements and the formation of detrimental intermetallic compounds.


2009 ◽  
Vol 79-82 ◽  
pp. 143-146
Author(s):  
Jiang Hua Ma ◽  
Dong Ping Zhan ◽  
Zhou Hua Jiang ◽  
Ji Cheng He

In order to understand the effects of deoxidizer such as aluminium, titanium and magnesium on the impact toughness of heat affected zone (HAZ), three low carbon steels deoxidized by Ti-Al, Mg and Ti-Mg were obtained. After smelting, forging, rolling and welding simulation, the effects of Al, Ti and Mg addition on the impact toughness of HAZ in low carbon steel were studied. The inclusion characteristics (size, morphology and chemistry) of samples before welding and the fracture pattern of the specimens after the Charpy-type test were respectively analyzed using optical microscope and scanning electron microscopy (SEM). The following results were found. The density of inclusion in Ti-Mg deoxidized steel is bigger than Ti-Al deoxidized steel. The average diameter is decreased for the former than the latter. The addition of Ti-Mg can enhance the impact toughness of the HAZ after welding simulation. The maximal value of the impact toughness is 66.5J/cm2. The complex particles of MgO-TiOx-SiO2-MnS are most benefit to enhance impact toughness. The improvement of HAZ is attributable to the role of particle pinning and the formation of intergranular ferrite.


2013 ◽  
Vol 19 (S2) ◽  
pp. 456-457
Author(s):  
M. Rudneva ◽  
T. Kozlova ◽  
H.W. Zandbergen

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


1994 ◽  
Vol 365 ◽  
Author(s):  
Seetharama C. Deevi ◽  
Sarojini Deevi

ABSTRACTIn-situ synthesis of a composite of MoSi2-Al2O3 was carried out by reacting a thermite mixture consisting of MoO3, Al, and Si powders. The reaction was found to be extremely fast and violent, and a diluent was required to moderate the reaction. Thermal behavior of the thermite mixture was studied using DTA at different heating rates, and DTA was interrupted at different temperatures to determine the reaction mechanism. X-ray characterization of the products obtained at different temperatures reveals that the mechanism consists of a reduction of MoO3 by Al to MoO2 followed by a simultaneous oxidation of Al to Al2O3 and synthesis reaction between reduced Mo and Si to form MoSi2. The rate determining step is found to be reduction of MoO2 by Al and oxidation of Al to Al2O3. The thermite reaction was moderated by adding Mo and Si to the mixture of MoO3, Al, and Si such that the ratio of MoSi2 to the thermite was in the range of 60:40 to 90:10.


2015 ◽  
Vol 766-767 ◽  
pp. 315-319
Author(s):  
R. Ramesh ◽  
S. Suresh Kumar ◽  
S. Gowrishankar

In the present work AA1100/ Al3Ni MMC was successfully fabricated using the in-situ method of stirring and squeeze casting. The effects of amount of Ni powder on the formation and mechanical behavior of Al-Al3Ni MMC were investigated. The fabricated MMC was characterized using XRD and optical microscope. The XRD patterns clearly indicated the presence of Al3Ni particles without the formation of intermediate phases. The in-situ formed Al3Ni particles were found to have uniform distribution, good bonding and clear interface. The mechanical and tribological properties such as hardness, Ultimate Tensile Strength (UTS) and dry sliding wear behavior of AA1100/ Al3Ni MMC were compared for stir and squeeze casted MMCs with different percentage in weight of Al3Ni (5, 10 wt. %) and it was found that properties improved with increase in Al3Ni content and all properties of squeeze casted MMCs were superior to stir casted MMCs.


1970 ◽  
Vol 26 ◽  
pp. 22-30
Author(s):  
Rameshwor Adhikari ◽  
Reinhold Godehardt ◽  
Werner Lebek ◽  
Goerg H. Michler ◽  
Petra Potschke

Deformation behavior of nanocomposites based on an ethylene/1-octene copolymerand multiwalled carbon nanotube (CNT) was investigated by means of an atomic forcemicroscope (AFM). Via a special tensile module integrated to an optical microscope, it waspossible to record the stress-strain diagrams of the composites using miniaturized tensilespecimens. By analyzing strain induced structural changes occurring at differentsuccessively applied loads, it was possible to correlate the deformation mechanismsoccurring on various length scales (i.e. at macroscopic, microscopic as well as nanoscopiclevels) to different degrees of deformation. It was noteworthy that, contrasting theproperties of other nanocomposites described so far in the literature, both the strength andtoughness of the composites were found to enhance. It was found that the deformation of thecomposite on nanoscopic scale was inhomogeneous owing to anisotropic properties of theCNTs and their alignments. After unloading the sample, the nanostructure of the originalmaterial was fully regenerated explaining the macroscopically observed elastomericproperties.Keywords: Ethylene/1-octene copolymer; CNT; Deformation mechanism; AFM; In situ deformation testsDOI: 10.3126/jncs.v26i0.3626Journal of Nepal Chemical SocietyVol. 26, 2010Page: 22-30


Sign in / Sign up

Export Citation Format

Share Document