Study of the Hydrogen Traps in a High Strength TRIP Steel by Thermal Desorption Spectroscopy

2012 ◽  
Vol 706-709 ◽  
pp. 2253-2258 ◽  
Author(s):  
Diana Pérez Escobar ◽  
Lode Duprez ◽  
Kim Verbeken ◽  
Marc Verhaege

Thermal desorption spectroscopy (TDS) is a very important tool in hydrogen related research. It allows to distinguish between the different types of microstructural hydrogen traps based on the analysis of the different temperatures at which hydrogen desorbs from the material during heating. These peak temperatures depend on the metallurgical and microstructural characteristics of the steel under investigation and provide important information on the possible mechanisms for hydrogen embrittlement (HE). In the present work, multiple TDS experiments and an in-depth study of the microstructure were performed on a TRIP steel (TRIP700) that was previously cold deformed in order to make a correlation between the microstructural features of this material, e.g. grain boundaries, dislocations, martensite formation and the peaks that became visible during TDS. The results obtained for the TRIP grade were compared with those obtained for electrolytic pure iron, which only contained a limited amount of possible trap sites such as grain boundaries and an increasing amount of dislocations due to previous application of cold deformation. Significant differences between both materials and a significant impact of the degree of cold deformation for TRIP steels were observed.

Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3781
Author(s):  
Zhongping He ◽  
Huachu Liu ◽  
Zhenyu Zhu ◽  
Weisen Zheng ◽  
Yanlin He ◽  
...  

Transformation Induced Plasticity (TRIP) steels with silicon–manganese (Si–Mn) as the main element have attracted a lot of attention and great interest from steel companies due to their low price, high strength, and high plasticity. Retained austenite is of primary importance as the source of high strength and high plasticity in Si–Mn TRIP steels. In this work, the cold rolled sheets of Si–Mn low carbon steel were treated with TRIP and Dual Phase (DP) treatment respectively. Then, the microstructure and composition of the Si–Mn low carbon steel were observed and tested. The static tensile test of TRIP steel and DP steel was carried out by a CMT5305 electronic universal testing machine. The self-built true stress–strain curve model of TRIP steel was verified. The simulation results were in good agreement with the experimental results. In addition, the phase transformation energy of retained austenite and the work borne by austenite in the sample during static stretching were calculated. The work done by austenite was 14.5 J, which was negligible compared with the total work of 217.8 J. The phase transformation energy absorption of retained austenite in the sample was 9.12 J. The role of retained austenite in TRIP steel is the absorption of excess energy at the key place where the fracture will occur, thereby increasing the elongation, so that the ferrite and bainite in the TRIP steel can absorb energy for a longer time and withstand more energy.


2007 ◽  
Vol 537-538 ◽  
pp. 431-438 ◽  
Author(s):  
Cs. Orosz ◽  
Béla Palotás ◽  
János Dobránszky

Year by year the user and process site of steelmarket keep growing and lay claim to the steelmakers. The researchers, developers and technologists use every effort to try to produce steels with compound properties. From claim of users –especially the Automotive Industry – developed the DP- (Dual Phase) and TRIP - steels (TRansformation Induced Placticity). In the Automotive Industry draft mostly the claim of loose of weight and increase the safety reserve.Welding of these Advanced High Strenght Steels (AHSS does have but very few publications and studies approach the subject). This study is about problems of weldability of Dual Phase and TRIP – steels. Welding difficulties were associated with hard and brittle spot weld nuggets and fusion weld heat affected zones being caused by nitrid. Our aim is to develop a welding procedure giving good quality of spot weld, thus the problem of hardened and brittle spot welds would cease to exist.


2022 ◽  
Author(s):  
Sabina Markelj ◽  
Matic Pečovnik ◽  
Thomas Schwarz-Selinger ◽  
Mitja Kelemen

Abstract In this work the synergism between displacement damage creation and presence of hydrogen isotopes was studied. Tungsten samples were irradiated by 10.8 MeV W ions with or without the presence of D ions with two different energies of 300 eV/D and 1000 eV/D and different temperatures. In order to compare the results obtained with different exposure parameters the samples were afterwards additionally exposed to D ions at 450 K to populate the created defects. By increasing the W irradiation time, ion flux and energy, the increase of D concentration and D retention was observed as measured by nuclear reaction analysis and thermal desorption spectroscopy. By fitting the D depth profiles and D desorption spectra by the rate equation code MHIMS-R we could see that additional fill-levels were populated with higher flux and ion energy which ends up in higher final D concentration and retention as compared to experiments with lower D flux and energy.


2010 ◽  
Vol 638-642 ◽  
pp. 3254-3259 ◽  
Author(s):  
M.H.E. Janssen ◽  
M.J.M. Hermans ◽  
M. Janssen ◽  
I.M. Richardson

Advance high strength steels (AHSS), like dual phase (DP) and transformation induced plasticity (TRIP) steels, offer high strength and toughness combined with excellent uniform elongation. However, the higher alloying content of these steels limit their weldability and the thermal cycle of welding processes destroys the carefully designed microstructure. This will result in inferior mechanical properties of the joint. Therefore, joining processes with a low heat input, like brazing, are recommendable. Data regarding mechanical properties of joints in DP and TRIP steel is limited, especially for brazed joints. Results with respect to the fatigue lifetime of laser brazed butt joints are presented. In DP and TRIP steel, crack initiation takes place at the braze toe. In DP steel the crack propagates through the base metal. In TRIP steel, however, the crack may either follow the interface or may continue through the steel depending on the maximum stress level. The different failure mechanisms are explained on the basis of process conditions, the microstructure and the stress state.


2005 ◽  
Vol 490-491 ◽  
pp. 275-280
Author(s):  
O. Muránsky ◽  
Petr Lukáš ◽  
Petr Šittner ◽  
Jozef Zrník ◽  
P. Jenčuš ◽  
...  

High strength and ductility of the TRIP steels is often attributed to the transformation induced plasticity effect resulting from the strain induced martensitic transformation of the retained austenite in the bainite microstructure. The present work reports results of in-situ neutron diffraction experiments focused on monitoring the phase evolution in two TRIP steel samples (two different thermomechanical treatments) subjected to tensile loading at room temperature. Comparison of the single lineprofile analysis of reactor data (TKSN-400 at NPI Rez) and multi lineprofile analysis of data obtained at spallation neutron source (diffractometer ENGIN-X at ISIS RAL Chilton) suggests that the former can be used in the first approximation for in-situ monitoring of the phase evolution in TRIP steels subjected to mechanical loads.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1252 ◽  
Author(s):  
Eric Fangnon ◽  
Evgenii Malitckii ◽  
Yuriy Yagodzinskyy ◽  
Pedro Vilaça

Thermal desorption spectroscopy (TDS) is a powerful method for the measurement of hydrogen concentration in metallic materials. However, hydrogen loss from metallic samples during the preparation of the measurement poses a challenge to the accuracy of the results, especially in materials with high diffusivity of hydrogen, like ferritic and ferritic-martensitic steels. In the present paper, the effect of specimen cooling during the experimental procedure, as a tentative to reduce the loss of hydrogen during air-lock vacuum pumping for one high-strength steel of 1400 MPa, is evaluated. The results show, at room temperature, the presence of a continuous outward hydrogen flux accompanied with the redistribution of hydrogen within the measured steel during its exposure to the air-lock vacuum chamber under continuous pumping. Cooling of the steel samples to 213 K during pumping in the air-lock vacuum chamber before TDS measurement results in an increase in the measured total hydrogen concentration at about 14%. A significant reduction in hydrogen loss and redistribution within the steel sample improves the accuracy of hydrogen concentration measurement and trapping analysis in ferritic and martensitic steels.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shang-Chou Chang ◽  
Tien-Chai Lin ◽  
To-Sing Li

This work investigates the thermal effect on the structural, electrical, and optical properties of aluminum doped zinc oxide (AZO) films. The AZO films deposited at different temperatures were measured using a thermal desorption system to obtain their corresponding thermal desorption spectroscopy (TDS). In addition to obtaining information of thermal desorption, the measurement of TDS also has the effect of vacuum annealing on the AZO films. The results of measuring TDS imply part of the doped aluminum atoms do not stay at substituted zinc sites in AZO films. The (002) preferential direction of the AZO films in X-ray diffraction spectra shifts to a lower angle after measurement of TDS. The grain size grows and surface becomes denser for all AZO films after measurement of TDS. The carrier concentration, mobility, and average optical transmittance increase while the electrical resistivity decreases for AZO films after measurement of TDS. These results indicate that the AZO films deposited at 200°C are appropriate selections if the AZO films are applied in device fabrication of heat-produced process.


Science ◽  
2020 ◽  
Vol 367 (6474) ◽  
pp. 171-175 ◽  
Author(s):  
Yi-Sheng Chen ◽  
Hongzhou Lu ◽  
Jiangtao Liang ◽  
Alexander Rosenthal ◽  
Hongwei Liu ◽  
...  

Hydrogen embrittlement of high-strength steel is an obstacle for using these steels in sustainable energy production. Hydrogen embrittlement involves hydrogen-defect interactions at multiple-length scales. However, the challenge of measuring the precise location of hydrogen atoms limits our understanding. Thermal desorption spectroscopy can identify hydrogen retention or trapping, but data cannot be easily linked to the relative contributions of different microstructural features. We used cryo-transfer atom probe tomography to observe hydrogen at specific microstructural features in steels. Direct observation of hydrogen at carbon-rich dislocations and grain boundaries provides validation for embrittlement models. Hydrogen observed at an incoherent interface between niobium carbides and the surrounding steel provides direct evidence that these incoherent boundaries can act as trapping sites. This information is vital for designing embrittlement-resistant steels.


Sign in / Sign up

Export Citation Format

Share Document