Recrystallisation Behaviour of an Fe-Mn-C-Si-Al TWIP

2012 ◽  
Vol 715-716 ◽  
pp. 649-654 ◽  
Author(s):  
Lieven Bracke ◽  
Nieves Cabañas-Poy

The static recrystallisation behaviour of cold rolled and annealed TWinning Induced Plasticity (TWIP) steels is important for its industrial production. The recrystallisation kinetics have been determined for an Fe-Mn-C-Si-Al TWIP steel using hardness measurements and microstructure analysis: it has been shown that recrystallisation progresses rapidly with increased annealing temperature. Recrystallisation was faster at higher cold reductions, and a smaller final grain size was observed at lower annealing temperatures. This indicates that the mechanism is nucleation dominated at lower temperatures; grain growth at higher temperatures appears similar for all reductions. The recrystallisation results in a crystallographic texture where the main components of the cold rolling texture are preserved in the final texture after annealing, although some randomisation was observed.

2011 ◽  
Vol 181-182 ◽  
pp. 1054-1058
Author(s):  
Yan Dong Liu ◽  
Yi Qiao Yang

In this study, the effect of different compositions of the stabilized elements of Nb-Ti for cold rollling textures and the recrytalization textures of B4003M has been investigated. Cold rolling texture at 80% reduction displayed by the Nb-Ti added specimen is the weakest of all. When annealing at 900°C for 10 min, the recrystalli -zation textures displayed by the Nb-added, Ti-added, Nb-Ti-added and Nb-Ti-free alloys are compared. Results show that: {111} recrystallization texture in Nb-added alloy is the strongest, whereas it in the Nb-Ti-free alloy is the lowest. The mutual effect of Nd and Ti on refining the grain size is more obvious than the single element effect, while Nd is more effective than Ti.


2004 ◽  
Vol 467-470 ◽  
pp. 381-386 ◽  
Author(s):  
Hai Ou Jin ◽  
David J. Lloyd

AA5754 sheet has been processed by asymmetric rolling and the development of grain structure and texture in subsequent annealing studied at 240-500°C. It has been found that asymmetric rolling facilitates the formation of ultra-fine grain structure (1-2µm grain size) by shear strain promoted continuous recrystallization, which is a process of extended recovery and subgrain/grain growth. The ultra-fine grain structure is not thermally stable, and when the annealing temperature or time increases, the grain size eventually grows to its Zener limit. The deformation texture is similar to the typical f.c.c. cold rolling texture but rotated about the transverse direction. Along with the formation of an ultra-fine grain structure and subsequent grain growth, the deformation texture is retained.


2011 ◽  
Vol 702-703 ◽  
pp. 647-650
Author(s):  
Ahmed A. Saleh ◽  
Elena V. Pereloma ◽  
Azdiar A. Gazder

A TWinning Induced Plasticity (TWIP) steel was cold rolled to 42% thickness reduction followed by isochronal annealing for 300 s between 600-850 °C. Bulk texture evolution during recrystallisation was investigated by X-Ray Diffraction. While the development of the α-fibre after cold rolling is typical of low stacking fault energy materials, anomalously higher intensities were noted for the Goss ({110}) compared to Brass ({110}) orientations. Upon recrystallisation, the main rolling texture components were retained and ascribed to nucleation at orientations close to those of the deformed matrix followed by annealing twinning which leads to crystallographically identical variants. Unlike previous texture investigations on austenitic steels, the relatively homogeneous deformation microstructure and uniform distribution of subsequent nucleation sites led to the retention of the F ({111}) orientation. Moreover, the firsthand observation of the Rotated Copper ({112}) orientation in TWIP steel is attributed to the second order twinning of the A ({110}) orientation.


2013 ◽  
Vol 203-204 ◽  
pp. 38-41
Author(s):  
Hanna J. Krztoń ◽  
Dariusz Kuc ◽  
Zofia Kania

The effect of cold rolling and annealing treatments in two temperatures, 800°C and 900°C on texture formation in duplex steel (X60MnAl30-9) was examined. Texture measurements were carried out using X-ray diffraction and Schulz reflection technique. The mechanical properties i. e. 0.2% proof stress, ultimate tensile strength and elongation were measured for each experimental conditions. It was found that ferrite was characterized by the orientations of a fibre which could be found in cold rolling state and also after the annealing in both temperatures. The weak orientations close to g fibre were observed after the annealing. The cold rolling texture of austenite was a typical texture of cold rolled fcc metals. No significant changes in texture of austenite after the annealing treatments were found.


2013 ◽  
Vol 313-314 ◽  
pp. 693-696
Author(s):  
Ji Yuan Liu ◽  
Fu Xian Zhu ◽  
Shi Cheng Ma

Cold rolled dual phase steel was developed from Q345 steel by heat treatment procedure for automotive applications. The ultimate tensile strength was improved about 100MPa higher than the traditional cold-rolled Q345 steel in the continuous annealing simulation experiment. The microstructure presented varied characteristics in different intercritical annealing temperatures; mechanical properties were changed correspondingly as well. The chief discussions are focus on the recrystallization, hardenability of austenite and martensite transformation in the experiment.


1982 ◽  
Vol 18 ◽  
Author(s):  
L. Krusin-Elbaum ◽  
M. Wittmer ◽  
C.-Y. Ting ◽  
J. J. Cuomo

We have studied reactively sputtered ZrN, the most thermally stable of the refractory metal nitrides, for its diffusion barrier properties in aluminum metallization schemes with Rutherford backscattering spectroscopy and transmission electron microscopy (TEM). We find this compound to be very effective against aluminum diffusion up to 500 °C, independently of substrate temperature during sputtering. The useful temperature range can be extended by 50 °C with proper preannealing prior to aluminum deposition. The TEM study of the ZrN grain size as a function of annealing temperature revealed that the grain size does not change significantly upon annealing and that the grains are relatively small even at the highest annealing temperatures (about 300 Å at 900 °C). In addition, for annealing temperatures of and below 500 °C large portions of ZrN films were found to be of either amorphous or extremely fine–grain material, thus inhibiting the diffusion along grain boundaries. The presence of Zr3Al4Si5 ternary compound in samples annealed at 600 °C, as determined by X-ray analysis, may suggest that the ZrN barrier fails by decomposition of the film by aluminum.


2007 ◽  
Vol 550 ◽  
pp. 339-344 ◽  
Author(s):  
Shigeo Saimoto ◽  
Hai Ou Jin

A nominally pure Al slab was thermo-mechanically treated to result in a near random texture of 90 m grain size. Subsequent cold rolling with intermediate anneals at 230, 275, and 300°C reduced the Fe solute to near equilibrium compositions below 0.5 ppm atomic. The final cold rolled sheet continuously recrystallized; grain growth of this structure is reported. A grain-growth kinetics mapping was generated, correlating the parameters of Fe-in-Al solubility limit, Fe diffusivities in the grain boundaries and the Al lattice and the activation energies for migration rates.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2767 ◽  
Author(s):  
Chenchen Jiang ◽  
Qiuzhi Gao ◽  
Hailian Zhang ◽  
Ziyun Liu ◽  
Huijun Li

Microstructural evolutions of the 4Al alumina-forming austenitic steel after cold rolling with different reductions from 5% to 30% and then annealing were investigated using electron backscattering diffraction (EBSD), X-ray diffraction (XRD) and transmission electron microscopy (TEM). Tensile properties and hardness were also measured. The results show that the average grain size gradually decreases with an increase in the cold-rolling reduction. The low angle grain boundaries (LAGBs) are dominant in the cold-rolled samples, but high angle grain boundaries (HAGBs) form in the annealed samples, indicating that the grains are refined under the action of dislocations. During cold rolling, high-density dislocations are initially introduced in the samples, which contributes to a large number of dislocations remaining after annealing. With the sustaining increase in cold-rolled deformation, the samples exhibit more excellent tensile strength and hardness due to the decrease in grain size and increase in dislocation density, especially for the samples subjected to 30% cold-rolling reduction. The contribution of dislocations on yield strength is more than 60%.


Sign in / Sign up

Export Citation Format

Share Document