Effects of SiO2 and ZrO2 Additives on Microstructure and Properties of Al2O3 Ceramic

2013 ◽  
Vol 745-746 ◽  
pp. 523-527
Author(s):  
Yi Hua Li ◽  
De Chang Jia ◽  
Zhi Hua Yang ◽  
Yu Zhou

Alumina ceramic, with high mechanical strength, good electric insulation, high hardness and good corrosion resistance performance, has been widely used in machinery, electronic and electrical, chemical, medicine, construction and other high-tech areas. In this study, both silicon sol and zirconia particles are incorporated into the system and dense alumina composite ceramics were prepared by cold isostatic processing and pressureless sintering at 1550 . The influence of additives on phase composition, microstructure and mechanical properties were investigated. The XRD results show that mullite phase was generated in the composite ceramic. The composite ceramic has excellent comprehensive performance. For example, the sample with 3wt.% SiO2 and 5wt.% ZrO2 has density of 3.87g·cm-3, Vickers hardness of 17.6GPa, flexural strength of 369.0MPa, youngs modulus of 374.2GPa and fracture toughness of 3.57MPa·m1/2.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hyeon-Myeong Oh ◽  
Young-Jo Park ◽  
Ha-Neul Kim ◽  
Kundan Kumar ◽  
Jae-Woong Ko ◽  
...  

AbstractMotivated by recent finding of crystallographic-orientation-dependent etching behavior of sintered ceramics, the plasma resistance of nanocrystalline Y2O3-MgO composite ceramics (YM) was evaluated for the first time. We report a remarkably high plasma etching resistance of nanostructure YM surpassing the plasma resistance of commercially used transparent Y2O3 and MgAl2O4 ceramics. The pore-free YM ceramic with grain sizes of several hundred nm was fabricated by hot press sintering, enabling theoretical maximum densification at low temperature. The insoluble two components effectively suppressed the grain growth by mutual pinning. The engineering implication of the developed YM nanocomposite imparts enhanced mechanical reliability, better cost effectiveness with excellent plasma resistance property over their counterparts in plasma using semiconductor applications.


2010 ◽  
Vol 177 ◽  
pp. 182-185 ◽  
Author(s):  
Bao Feng Li ◽  
Jian Zheng ◽  
Xin Hua Ni ◽  
Ying Chen Ma ◽  
Jing Zhang

The composite ceramics is composed of fiber-eutectics, transformation particles and matrix particles. First, the recessive expression between the effective stress in fiber-eutectic and the flexibility increment tensor is obtained according to the four-phase model. Second, the analytical formula which contains elastic constant of the fiber-eutectic is obtained applying Taylor’s formula. The eutectic is transverse isotropy, so there are five elastic constants. Third, the effective elastic constants of composite ceramics are predicted. The result shows that the elastic modulus of composite ceramic is reduced with the increase of fibers fraction and fibers diameter.


2013 ◽  
Vol 03 (01) ◽  
pp. 1350001 ◽  
Author(s):  
Huafei Lu ◽  
Yuanhua Lin ◽  
Jiancong Yuan ◽  
Cewen Nan ◽  
Kexin Chen

To investigate the multi-functional ceramics with both high permittivity and large nonlinear coefficient, we have prepared rare-earth Tb -and- Co doped ZnO and TiO 2-rich CaCu3Ti4O12 (TCCTO) powders by chemical co-precipitation and sol–gel methods respectively, and then obtained the TCCTO/ ZnO composite ceramics, sintered at 1100°C for 3 h in air. Analyzing the composite ceramics of the microstructure and phase composition indicated that the composite ceramics were composed of the main phases of ZnO and CaCu3Ti4O12 (CCTO). Our results revealed that the TCCTO/ ZnO composite ceramics showed both high dielectric and good nonlinear electrical behaviors. The composite ceramic of TCCTO: ZnO = 0.3 exhibited a high dielectric constant of ~210(1 kHz) with a nonlinear coefficient of ~11. The dielectric behavior of TCCTO/ ZnO composite could be explained by the mixture rule. With the high dielectric permittivity and tunable varistor behaviors, the composite ceramics has a potential application for the higher voltage transportation devices.


2010 ◽  
Vol 26-28 ◽  
pp. 919-924
Author(s):  
Kai Jin Huang

Based on the combined toughening principle, pure Al2O3/AlB12/Al composite ceramic powders have been synthesized using pulsed Nd:YAG laser igniting method. This method starts from Al and B2O3 powder mixtures, after which Al2O3/AlB12/AlN composite ceramics were fabricated by hot-press sintering at 1600°C for 2h under the protection of a N2 atmosphere. XRD and SEM techniques were used to characterize the phases and morphologies of the powders and the ceramics. The bending strength and the fracture toughness of the ceramics were measured by the three-point bending method and the indentation fracture method, respectively. The results show that the pure Al2O3/AlB12/Al composite ceramic powders can be successfully synthesized by pulsed Nd:YAG laser igniting method because the adiabatic temperature of Al-B2O3 system is more than 1800K. Al2O3 and AlB12 phases were formed by the liquid-liquid reaction mechanism and the liquid-solid reaction mechanism, respectively. The bending strength and the fracture toughness of the Al2O3/AlB12/AlN composite ceramics were 525.86MPa and 5.68MPa.m1/2, respectively. These values are 50.25% and 42% greater than those of the pure Al2O3 ceramic (350MPa and 4MPa.m1/2) due to the reinforcing and toughening in-situ formation of small AlN particles.


2014 ◽  
Vol 602-603 ◽  
pp. 536-539
Author(s):  
Hai Bin Sun ◽  
Yu Jun Zhang ◽  
Qi Song Li

High hardness, high strength, high fracture toughness and low density are required for novel bulletproof materials. B4C/SiC composite ceramic is one of the most potential candidates. In this study, B4C/SiC composite ceramic was prepared by reaction sintering. The influence of B4C content, species and content of carbon, sintering temperature on the mechanical properties of B4C/SiC composite ceramic were studied. A high performance B4C/SiC composite ceramic was sintered at 1750°C for 30 min. Phenolic resin and carbon black were both chosen as carbon sources, whose favorable contents were 10wt%, 5wt%, respectively. The density of sintered bodies reduces with B4C content increases. To some extent, fracture toughness, bending strength improve initially and then deteriorate with the increase of B4C content whose optimal amount is 30wt%. The optimal fracture toughness and bending strength of the B4C/SiC composite ceramic are 5.07MPa·m1/2 and 487MPa, respectively. Meanwhile, the Viker-hardness of the sintered body is 30.2GPa, the density is as low as 2.82g/cm3.


2007 ◽  
Vol 353-358 ◽  
pp. 1314-1317
Author(s):  
You Feng Zhang ◽  
Qing Chang Meng ◽  
De Chang Jia ◽  
Yu Zhou

The Al2O3/LiTaO3 (ALT) composite ceramics were fabricated by hot pressing method and polarization treated at different temperatures along height and width directions. Effects of polarization treatment on mechanical properties of the ALT composite ceramic were investigated. Flexural strength decreased with the increase of polarization temperature. Meanwhile, the flexural strength of samples polarized in height direction is higher than that polarized in width direction. The composite ceramic fractures intragranularly, and many rupture steps in polarization direction were observed on fractographs of the composite ceramics. Domain switching in LiTaO3 particles increased the resistance of crack propagation and improved the mechanical properties of the polarized ALT composite ceramics.


2015 ◽  
Vol 12 (6) ◽  
pp. 533-540
Author(s):  
Jinfeng Yu ◽  
Xiequan Liu ◽  
Xinhua Ni

Composite ceramic has the excellent properties at normal and high temperatures, especially when the structure of the composite eutectic is triangular symmetrical. Obviously, mechanical behavior and fracture properties of composite ceramic closely relates to the micro-structure of symmetrical triangular eutectic. In order to reveal the mechanical properties of eutectic composite ceramic, it is necessary to determine the intrinsic strength of triangular composite eutectic. Since the fiber and matrix of triangular symmetrical composite eutectic sharing a same covalent bond, the theoretical cohesion strength of symmetrical triangular eutectic was obtained by the combination-separation displacement of intrinsic bond. Basing on micro-structure plastic deformation before fracture of composite eutectic matrix, the dislocation pile-up model of eutectic composite ceramics was established. And then intrinsic bond fracture shear stress of triangular symmetrical composite eutectic was given by using the theory of dislocation pile-up. According to the macroscopic structure properties of triangular symmetrical composite eutectic and the distribution of stress field of composite eutectic, intrinsic strength of eutectic was obtained. The results shows that intrinsic strength of triangular symmetrical composite eutectic possessed clear size-dependence and the stress decreases with the increases of the diameter of fiber inclusions.


Author(s):  
Yu. S. Pogozhev ◽  
M. V. Lemesheva ◽  
A. Yu. Potanin ◽  
S. I. Rupasov ◽  
V. I. Vershinnikov ◽  
...  

The paper focuses on obtaining heterophase powder ceramics and consolidated ceramics based on borides and silicides of hafnium and molybdenum by combining the methods of self-propagating high-temperature synthesis (SHS) and hot pressing (HP). Composite ceramic SHS powders HfB2–HfSi2–MoSi2 were obtained according to the scheme of magnesium-thermal reduction from oxide raw materials where the combustion wave is characterized by temperatures of 1750–2119 K and high mass combustion rates of 8,4– 9,3 g/s. The structure of synthesized SHS powders consists of relatively large MoSi2 grains up to 10 μm in size and submicron elongated HfB2 grains located mainly inside the MoSi2 grains and rounded Si precipitates. The composition with a lower concentration of boron contains a large number of polyhedral HfSi2 grains with a size of less than 10 μm. The resulting powders are characterized by an average particle size of ~6 μm with a maximum size up to 26 μm. Phase compositions of ceramics consolidated by the HP method and SHS synthesized powders are identical. The microstructure of compact samples consists of faceted HfB2 elongated grains 0,5– 10,0 μm in size, polyhedral HfSi2 and MoSi2 grains up to 8–10 μm in size and silicon interlayers. Consolidated ceramics has a high structural and chemical homogeneity, low residual porosity of 1,1–1,7 %, high hardness of 11,7–12,6 GPa and thermal conductivity of 62–87 W/(m·K).


2012 ◽  
Vol 512-515 ◽  
pp. 590-595 ◽  
Author(s):  
Ya Mei Lin ◽  
Cui Wei Li ◽  
Feng Kun Yang ◽  
Chang An Wang

Porous anorthite/mullite composite ceramics with different mullite content were fabricated by foam-gelcasting, using CaCO3, SiO2, α-Al2O3as raw material for anorthite phase and mullite powder for mullite phase. Effects of mullite powder content on bulk density, porosity, compressive strength and thermal conductivity of the porous composite ceramics were researched. It has been shown that mullite powder content has great effect on microstructure and properties of the porous anorthite⁄mullite composite ceramics. The open porosity of the prepared porous anorthite⁄mullite composite ceramics is in the range of 58.7 %~77.5 %, the compressive strength is between 4.2 and 30.9 MPa, and the thermal conductivity is in the range of 0.18 ~1.47 W⁄(m·K).


Sign in / Sign up

Export Citation Format

Share Document