Retarded Oxide Growth on 4H-SiC(0001) Substrates due to Sacrificial Oxidation

2014 ◽  
Vol 778-780 ◽  
pp. 562-565 ◽  
Author(s):  
Takuji Hosoi ◽  
Yusuke Uenishi ◽  
Yuki Nakano ◽  
Takashi Nakamura ◽  
Takayoshi Shimura ◽  
...  

The impact of a sacrificial oxidation treatment on subsequent gate oxide formation on 4H-SiC(0001) substrates was investigated. Although x-ray photoelectron spectroscopy (XPS) analysis revealed that the SiC surface after removing a 40-nm-thick sacrificial oxide by diluted HF solution was almost identical to that of an as-grown epilayer, the subsequent dry O2 oxidation resulted in a thinner SiO2 layer for the sample with the sacrificial oxidation in the ultrathin film regime (~3 nm). The metal-oxide-semiconductor (MOS) capacitor with sacrificial oxidation also exhibited a larger frequency dispersion in capacitance-voltage (C-V) characteristics, indicating that interface property had been degraded. However, when the oxide thickness reached about 10 nm, there was no difference in frequency dispersion with and without sacrificial oxidation. This means that the SiO2 growth in the initial stage of oxidation was significantly affected by the sacrificial oxidation treatment.

1989 ◽  
Vol 163 ◽  
Author(s):  
S.N. Kumar ◽  
G. Chaussemy ◽  
A. Laugier ◽  
B. Canut ◽  
M. Charbonnier

AbstractAngle-resolved X-ray photoelectron spectroscopy characterization of the surface region of high-dose Sb+ ion implanted silicon, after rapid thermal treatments over various temperatures, is reported. The results obtained are compared with the Rutherford backscattering data and the capacitance-voltage measurements on the metal-oxide-semiconductor mesa structures built on them. Rapid anneal at 1100 °C of the 1.4×1016 Sb+/cm2 samples showed an anomalous deep oxygen diffusion inside the implanted region.


Author(s):  
Takato Nakanuma ◽  
Yu Iwakata ◽  
Arisa Watanabe ◽  
Takuji Hosoi ◽  
Takuma Kobayashi ◽  
...  

Abstract Nitridation of SiO2/4H-SiC(1120) interfaces with post-oxidation annealing in an NO ambient (NO-POA) and its impact on the electrical properties were investigated. Sub-nm-resolution nitrogen depth profiling at the interfaces was conducted by using a scanning x-ray photoelectron spectroscopy microprobe. The results showed that nitrogen atoms were incorporated just at the interface and that interface nitridation proceeded much faster than at SiO2/SiC(0001) interfaces, resulting in a 2.3 times higher nitrogen concentration. Electrical characterizations of metal-oxide-semiconductor capacitors were conducted through capacitance-voltage (C–V) measurements in the dark and under illumination with ultraviolet light to evaluate the electrical defects near the conduction and valence band edges and those causing hysteresis and shifting of the C–V curves. While all of these defects were passivated with the progress of the interface nitridation, excessive nitridation resulted in degradation of the MOS capacitors. The optimal conditions for NO-POA are discussed on the basis of these experimental findings.


2011 ◽  
Vol 679-680 ◽  
pp. 338-341 ◽  
Author(s):  
Dai Okamoto ◽  
Hiroshi Yano ◽  
Shinya Kotake ◽  
Tomoaki Hatayama ◽  
Takashi Fuyuki

We report on electrical and physical investigations aimed to clarify the mechanisms behind the high channel mobility of 4H-SiC metal–oxide–semiconductor field-effect transistors processed with POCl3 annealing. By low-temperature capacitance–voltage analysis, we found that the shallow interface traps are effectively removed by P incorporation. Using x-ray photoelectron spectroscopy, we found that the three-fold coordinated P atoms exist at the oxide/4H-SiC interface. The overall results suggest that P atoms directly remove the Si–Si bonds and thus eliminate the near-interface traps.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3917
Author(s):  
Jung Sub Lee ◽  
Tae Young Ahn ◽  
Daewon Kim

Ammonium sulfide ((NH4)2S) was used for the passivation of an InP (100) substrate and its conditions were optimized. The capacitance–voltage (C–V) characteristics of InP metal-oxide-semiconductor (MOS) capacitors were analyzed by changing the concentration of and treatment time with (NH4)2S. It was found that a 10% (NH4)2S treatment for 10 min exhibits the best electrical properties in terms of hysteresis and frequency dispersions in the depletion or accumulation mode. After the InP substrate was passivated by the optimized (NH4)2S, the results of x-ray photoelectron spectroscopy (XPS) and the extracted interface trap density (Dit) proved that the growth of native oxide was suppressed.


1999 ◽  
Vol 567 ◽  
Author(s):  
Renee Nieh ◽  
Wen-Jie Qi ◽  
Yongjoo Jeon ◽  
Byoung Hun Lee ◽  
Aaron Lucas ◽  
...  

ABSTRACTBa0.5Sr0.5TiO3 (BST) is one of the high-k candidates for replacing SiO2 as the gate dielectric in future generation devices. The biggest obstacle to scaling the equivalent oxide thickness (EOT) of BST is an interfacial layer, SixOy, which forms between BST and Si. Nitrogen (N2) implantation into the Si substrate has been proposed to reduce the growth of this interfacial layer. In this study, capacitors (Pt/BST/Si) were fabricated by depositing thin BST films (50Å) onto N2 implanted Si in order to evaluate the effects of implant dose and annealing conditions on EOT. It was found that N2 implantation reduced the EOT of RF magnetron sputtered and Metal Oxide Chemical Vapor Deposition (MOCVD) BST films by ∼20% and ∼33%, respectively. For sputtered BST, an implant dose of 1×1014cm−;2 provided sufficient nitrogen concentration without residual implant damage after annealing. X-ray photoelectron spectroscopy data confirmed that the reduction in EOT is due to a reduction in the interfacial layer growth. X-ray diffraction spectra revealed typical polycrystalline structure with (111) and (200) preferential orientations for both films. Leakage for these 50Å BST films is on the order of 10−8 to 10−5 A/cm2—lower than oxynitrides with comparable EOTs.


1999 ◽  
Vol 567 ◽  
Author(s):  
Masayuki Suzuki ◽  
Yoji Saito

ABSTRACTWe tried direct oxynitridation of silicon surfaces by remote-plasma-exited nitrogen and oxygen gaseous mixtures at 700°C in a high vacuum. The oxynitrided surfaces were investigated with in-situ X-ray photoelectron spectroscopy. With increase of the oxynitridation time, the surface density of nitrogen gradually increases, but that of oxygen shows nearly saturation behavior after the rapid increase in the initial stage. We also annealed the grown oxynitride and oxide films to investigate the role of the contained nitrogen. The desorption rate of oxygen from the oxynitride films is much less than that from oxide films. We confirmed that nitrogen stabilizes the thermal stability of these oxynitride films.


2019 ◽  
Vol 963 ◽  
pp. 226-229
Author(s):  
Kidist Moges ◽  
Mitsuru Sometani ◽  
Takuji Hosoi ◽  
Takayoshi Shimura ◽  
Shinsuke Harada ◽  
...  

We demonstrated an x-ray photoelectron spectroscopy (XPS)-based technique to reveal the detailed nitrogen profile in nitrided SiO2/4H-SiC structures with sub-nanometer-scale-resolution. In this work, nitric oxide (NO)- and pure nitrogen (N2)-annealed SiO2/4H-SiC(0001) structures were characterized. The measured results of NO-annealed samples with various annealing duration indicate that preferential nitridation just at the SiO2/SiC interfaces (~0.3 nm) proceeds in the initial stage of NO annealing and a longer duration leads to the distribution of nitrogen in the bulk SiO2 within few nanometers of the interface. The high-temperature N2 annealing was found to induce not only SiO2/SiC interface nitridation similarly to NO annealing but also SiO2 surface nitridation.


Sign in / Sign up

Export Citation Format

Share Document