Thermal Stability of Al-Cu-Mg Alloys

2014 ◽  
Vol 794-796 ◽  
pp. 691-696 ◽  
Author(s):  
Gaelle Pouget ◽  
Christophe Sigli

The Al-Cu-Mg alloys currently used at elevated temperature for aerospace applications, such as 2618 and 2219, were developed in the 1950s. Since then, not only have property requirements evolved significantly with the widespread introduction of damage tolerant design, but also the understanding and modelling capacity of the alloys' property-composition-processing relationships have developed beyond recognition. Moreover there is a renewed need for higher strength/toughness, higher temperature solutions in many aircraft's hot areas.A kinetic model has been developed to predict the strengthening capability and the thermal stability of hardening phases. It is based on a homogeneous nucleation, growth and coarsening model applied to S' (Al2CuMg) and θ' (Al2Cu); the yield strength is then calculated from the precipitates' size distribution. It suggests two areas of interest in the Al-Cu-Mg diagram.Three targeted compositions were then explored inside and outside the areas of interest and their thermal stability assessed up to 250°C. Different behaviours were observed and are explained by the strengthening potential and the coarsening resistance of S' and θ'. The two interesting areas for thermally stability are confirmed. An area of poorer thermal stability was also identified, associated with a high Cu content in solid solution which accelerates precipitate coarsening kinetics.

2012 ◽  
Vol 727-728 ◽  
pp. 1552-1556
Author(s):  
Renata Barbosa ◽  
Dayanne Diniz Souza ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

Studies of degradation have verified that the decomposition of some quaternary ammonium salts can begin to be significant at the temperature of about 180 ° C and like most thermoplastics are processed at least around this temperature, the thermal stability of the salt in clay should always be considered. Some salts are more stable than others, being necessary to study the degradation mechanisms of each case. In this work, four quaternary ammonium salts were characterized by differential scanning calorimetry (DSC) and thermogravimetry (TG). The results of DSC and TG showed that the salts based chloride (Cl-) anion begin to degrade at similar temperatures, while the salt based bromide (Br-) anion degrades at higher temperature. Subsequently, a quaternary ammonium salt was chosen to be used in organoclays, depending on its chemical structure and its thermal behavior.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Salma Gul ◽  
Anwar-ul-Haq Ali Shah ◽  
Salma Bilal

A comprehensive study of thermally treated polyaniline in its emeraldine salt form is presented here. It offers an understanding of the thermal stability of the polymer. Emeraldine salt was prepared by a novel emulsion polymerization pathway using dodecylbenzene sulfonic acid and sulfuric acid together as dopants. The effect of temperature and heating rate on the degradation of this emeraldine salt was studied via thermogravimetric analysis. The thermally analyzed sample was collected at various temperatures, that is, 250, 490, 500, and 1000°C. The gradual changes in the structure of the emeraldine salt were followed through cyclic voltammetry, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy. Results demonstrate that emeraldine salt shows high thermal stability up to 500°C. This is much higher working temperature for the use of emeraldine salt in higher temperature applications. Further heat treatment seems to induce deprotonation in emeraldine salt. Cyclic voltammetry and ultraviolet-visible spectroscopy revealed that complete deprotonation takes place at 1000°C where it loses its electrical conductivity. It is interesting to note that after the elimination of the dopants, the basic backbone of emeraldine salt was not destroyed. The results reveal that the dopants employed have a stability effect on the skeleton of emeraldine salt.


2013 ◽  
Vol 690-693 ◽  
pp. 74-77
Author(s):  
Zuzana Turnova ◽  
Tomas Chrebet ◽  
Ivana Turekova ◽  
Karol Balog

Today, magnesium (Mg) alloys are recognized alternatives to iron and aluminum to reduce the weight of structural materials. This contribution was performed to provide information on the flammability of magnesium alloys through investigation of the ignition temperature of selected Mg alloys. The test was performed in a muffle furnace with dynamic heating program. Also were performed tests of chemical composition of studied specimens.


2001 ◽  
Vol 16 (11) ◽  
pp. 3188-3201 ◽  
Author(s):  
Niklas Hellgren ◽  
Nian Lin ◽  
Esteban Broitman ◽  
Virginie Serin ◽  
Stefano E. Grillo ◽  
...  

The thermal stability of carbon nitride films, deposited by reactive direct current magnetron sputtering in N2 discharge, was studied for postdeposition annealing temperatures TA up to 1000 °C. Films were grown at temperatures of 100 °C (amorphous structure) and 350 and 550 °C (fullerenelike structure) and were analyzed with respect to thickness, composition, microstructure, bonding structure, and mechanical properties as a function of TA and annealing time. All properties investigated were found to be stable for annealing up to 300 °C for long times (>48 h). For higher TA, nitrogen is lost from the films and graphitization takes place. At TA = 500 °C the graphitization process takes up to 48 h while at TA = 900 °C it takes less than 2 min. A comparison on the evolution of x-ray photoelectron spectroscopy, electron energy loss spectroscopy and Raman spectra during annealing shows that for TA > 800 °C, preferentially pyridinelike N and –C≡N is lost from the films, mainly in the form of molecular N2 and C2N2, while N substituted in graphite is preserved the longest in the structure. Films deposited at the higher temperature exhibit better thermal stability, but annealing at temperatures a few hundred degrees Celsius above the deposition temperature for long times is always detrimental for the mechanical properties of the films.


2019 ◽  
Vol 50 (11) ◽  
pp. 5264-5270
Author(s):  
Min Zha ◽  
Xiang-Tao Meng ◽  
Zhi-Yuan Yu ◽  
Hong-Min Zhang ◽  
Hao-Liang Yin ◽  
...  

2011 ◽  
Vol 133 (37) ◽  
pp. 14488-14491 ◽  
Author(s):  
Arivazhagan Rajendran ◽  
Masayuki Endo ◽  
Yousuke Katsuda ◽  
Kumi Hidaka ◽  
Hiroshi Sugiyama

2013 ◽  
Vol 32 (4) ◽  
pp. 339-343 ◽  
Author(s):  
Siyamak Bagheriyan

AbstractSb2S3 nanoparticles were synthesized via a simple sonochemical reaction between SbCl3 and thioacetamide. The effect of different parameters such as power and time of pulsation on the morphology of the product has been investigated. The Sb2 S3 nanostructures were then added to acrylonitrile-butadiene-styrene terpolymer. The effect of Sb2 S3 nanostructures on the thermal stability of the polymeric matrix has been examined. The thermal decomposition of the nanocomposite shifts towards higher temperature in the presence of the Sb2 S3 . Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), photoluminescence (PL) spectroscopy, thermogravimetric analysis (TGA), UL-94 and limiting oxygen index (LOI) analysis.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1523
Author(s):  
Dong Zhao ◽  
Wei Liu ◽  
Yucai Shen ◽  
Guodong Jiang ◽  
Tingwei Wang

Ceramifiable ethylene propylene diene monomer (EPDM) composites with fiber network structures were prepared by using aramid fiber (AF), ammonium polyphosphate (APP), and silicate glass frits (SGF). The effect of AF on the curing characteristic of the ceramifiable EPDM composites was studied. The morphology of AF in the composites system was observed by optical microscopy (OM) and scanning electron microscope (SEM). The effects of the observed AF network structures on the solvent resistance, mechanical properties, ablative resistance, self-supporting property, and ceramifiable properties of the composites were investigated. Results suggested that the existence of the AF network structure improved the vulcanization properties, solvent resistance, thermal stability, and ablative resistance of the EPDM composites. An excellent self-supporting property of the EPDM composites was obtained by combining the formation of the AF network and the formation of crystalline phases at higher temperature (above 600 °C). The thermal shrinkage performance of AF and the increased thermal stability of the EPDM composites improved the ceramifiable properties of the EPDM composites.


Sign in / Sign up

Export Citation Format

Share Document