Preparation and Characteristic of Different Hollow Microspheres Filled Syntactic Foams

2014 ◽  
Vol 809-810 ◽  
pp. 237-242
Author(s):  
Xin Jin ◽  
He Yi Ge ◽  
Ping Wang ◽  
Zhong Yuan Pan ◽  
Juan Chen

In this study, hollow glass microspheres (HGM) and hollow polystyrene microspheres (HPSM) have been employed as fillers in epoxy resin to prepare the syntactic foam. A kind of good performance composite was prepared. The effects of presence of various hollow microspheres on the impact and compressive properties of syntactic foams are studied. Weight fraction of HPSM and HGM for the syntactic foams varies up to 2.0 wt% and 25 wt%, respectively. The results show that the coupling agent can induce the interfacial adhesion between the HGM and the resin and help HGM uniformly disperse in the resin and hence result in better mechanical properties of composite. On the other hand, the effect of HPSM for the composite density is greater than that of HGM. The addition of a small percentage of HPSM helps produce an important improvement in the low density of syntactic foam. The syntactic foam has uniform stability component and the excellent integrative performances. Fabricated syntactic foams had compression strength of 51.96 MPa and density of 0.671 g/cm3.

2018 ◽  
Vol 280 ◽  
pp. 301-307
Author(s):  
Z. Zakaria ◽  
C.Y. Yao

This research focuses on the effect of rejected nitrile butadiene rubber (rNBR) gloves particles reinforced epoxy macrospheres (EM) on the physical properties and compressive stress of syntactic foam. Adding rNBR particles on the surface of macrospheres can increase the energy absorption as a result of improving the compressive properties of syntactic foam. Three types of macrospheres have been produced for the fabrication of syntactic foam, namely EM without rNBR, 1-layer rNBR-EM and 2-layer rNBR-EM. The results showed that increased rNBR particles layer on macrospheres has increased the wall thickness, and reduced the radius ratio of macrospheres as well as increased the density of syntactic foams. The compressive strength and modulus of syntactic foam with 2-rNBR-EM increased compared to the syntactic foams of 1-rNBR-EM and EM without rNBR. In addition, the toughness of the 2-rNBR-EM increased compared to the syntactic foams of 1-rNBR-EM and EM without rNBR.


2019 ◽  
Vol 15 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Rositsa Petkova-Slipets ◽  
Penka Zlateva

AbstractThe influence of types and parameters of hollow microspheres in the composition of syntactic foams on their structure and coefficient of thermal conductivity has been studied. By using structural and thermal analysis it has been found that the volume concentration and the size of the ceramic and glass hollow microspheres have a strong impact on the density and thermophysical properties of the thin syntactic foams coatings. It has been shown that the best heat insulating properties belong to syntactic foam with composition of 60 vol. % ceramic microspheres with particle size of 1 - 40 μm (k = 0.029 W/m·K, R = 0.008 (m2·K)/W) and with composition of 80 vol. % glass hollow microspheres with particle size of 9 - 25 μm (k = 0.087 W/m·K, R = 0.008 (m2·K)/W). The results demonstrate that application of syntactic foams as thin insulating coatings is appropriate and they are an energy efficient material with number of benefits compare with the common thermal insulators.


2021 ◽  
Author(s):  
H. R. TEWANI ◽  
DILEEP BONTHU ◽  
H. S. BHARATH ◽  
MRITYUNJAY DODDAMANI ◽  
P. PRABHAKAR

Polymer-based syntactic foams find use in the marine industry as primary structural materials due to their inherent lightweight nature and enhanced mechanical properties relative to pure HDPE. 3-D printing these materials circumvents the use of joining assemblies, enabling the production of complex shapes as standalone structures. Although the quasi-static response of these 3D printed foams has been well studied independently in recent years, their dynamic impact resistance and tolerance as potential core material for sandwich panels have not been the focus. Moreover, 3D printing is known to impart directionality in the printed syntactic foams, which may introduce failure mechanisms typically not observed in molded foams. It is therefore important to investigate the mechanics of 3-D printed syntactic foam core composite sandwich structures under impact loading and characterize their failure mechanisms for establishing dynamic impact resistance. To this end, 3-D printed syntactic foams have been developed using rasters of High-Density Polyethylene (HDPE) and Glass MicroBalloon (GMB) fillers by adopting the Fused Raster Fabrication (FFF) technique. The current study is performed to assess the impact performance of these composite foam cores based on the volume fraction of fillers and print orientation. The weight percentage of GMB fillers in printed specimens ranges from 0% to 60% in increments of 20%. This study presents the impact response of these composite sandwich panels at different energy levels, in compliance with ASTM D7136/D7136M - 20. Observations suggest that an increase in GMB % in HDPE matrix improves the impact performance in terms of the peak load of the material, but the failure behavior becomes brittle to an extent. Observing the failed specimens under a Micro-CT scanner captures the failure morphologies and helps characterize failure processes during impact. It is noticed that core materials with higher GMB content are prone to individual raster breakage and delamination at the back face, in addition to debonding between individual rasters. Specimens printed along the longer dimension (y-direction) impart more warping in the final sandwich structures than that of specimens printed along the shorter dimension (x-direction). Therefore, they are more susceptible to delamination at the back face. Addition of GMB fillers mitigate the tendency of the sandwich panels to warp.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4172 ◽  
Author(s):  
Chenhao Qian ◽  
Chen Liang ◽  
Ziyang He ◽  
Weixi Ji

This work experimentally investigates the effect of layered structure on the static and impact response of a new layered syntactic foam developed for impact energy absorption. The layered syntactic foam had the same density of 1.6 g/cm3 and the same components of 50% large spheres (L) and 50% small spheres (S) with different structures from two layers to five layers. The impact response and energy absorption were investigated by drop-weight impact tests. Under static loading, more layers led to higher yield stress and lower energy absorption. There were three types of progressive failures of layered syntactic form under impact loading. The failure propagation was examined and found to be dependent on the layer number and impact energy. Interestingly, layered syntactic foam absorbed more energy than both of its components in terms of ductility. The ductility of layered syntactic foam decreased with the increase in layer number. The peak stress of layered syntactic foam increased with the increase in layer number. Two-layered syntactic foam LS had the highest ductility under 60 J/g impact, as well as an energy absorption of 35 J/g, compared to other layered syntactic foams. Specifically, its component L had a ductility under 70 J/g and an energy absorption of 25 J/g, while component S had a ductility under 10 J/g and an energy absorption of 10 J/g.


2014 ◽  
Vol 1061-1062 ◽  
pp. 129-132
Author(s):  
Zhuo Chen ◽  
Zhi Xiong Huang ◽  
Bing Yan Jiang

A new type of syntactic foam fabricated with four types of hollow microspheres (HGMs) were prepared and its compressive properties were tested following ASTM D 695-96 standard. The HGMs were designed to have specific size distribution and wall thickness. The compressive strength and modulus of the new syntactic foam were compared with those prepared with single type of HGMs. With same density, the new syntactic foam have better compressive properties.


2019 ◽  
Vol 54 (4) ◽  
pp. 535-547 ◽  
Author(s):  
P Breunig ◽  
V Damodaran ◽  
K Shahapurkar ◽  
S Waddar ◽  
M Doddamani ◽  
...  

Sandwich composites and syntactic foams independently have been used in many engineering applications. However, there has been minimal effort towards taking advantage of the weight saving ability of syntactic foams in the cores of sandwich composites, especially with respect to the impact response of structures. To that end, the goal of this study is to investigate the mechanical response and damage mechanisms associated with syntactic foam core sandwich composites subjected to dynamic impact loading. In particular, this study investigates the influence of varying cenosphere volume fraction in syntactic foam core sandwich composites subjected to varying dynamic impact loading and further elucidates the extent and diversity of corresponding damage mechanisms. The syntactic foam cores are first fabricated using epoxy resin as the matrix and cenospheres as the reinforcement with four cenosphere volume fractions of 0% (pure epoxy), 20%, 40%, and 60%. The sandwich composite panels are then manufactured using the vacuum assisted resin transfer molding process with carbon fiber/vinyl ester facesheets. Dynamic impact tests are performed on the sandwich composite specimens at two energy levels of 80 J and 160 J, upon which the data are post-processed to gain a quantitative understanding of the impact response and damage mechanisms incurred by the specimens. A qualitative understanding is obtained through micro-computed tomography scanning of the impacted specimens. In addition, a finite element model is developed to investigate the causes for different damage mechanisms observed in specimens with different volume fractions.


2018 ◽  
Vol 933 ◽  
pp. 174-181 ◽  
Author(s):  
Ming Ming Su ◽  
Han Wang ◽  
Kai Yan Li ◽  
Hai Hao

Metal matrix syntactic foams with relativity low density (2.03 g/cm3) were prepared by stir casting method. The syntactic foam is comprised of alumina hollow spheres with a diameter range of 1.0-1.5 mm as reinforcement and ZL111 aluminum alloy as matrix. Calcium particles are used to increase the viscosity of the melt to ensure that low density hollow spheres are immersed in the melt. Microstructure characteristics and quasi-static compressive properties of syntactic foams were studied. The hollow spheres were uniformly distributed in the aluminum matrix, and the interface between them was in continuous contact. Compressive stress-strain curve exhibits three distinct stages of deformation: (i) the linear elastic stage; (ii) the plateau area; (iii) final densification stage. The compression strength and plateau stress are 85 MPa and 75 MPa, respectively. The main reasons for the sample failure are the collapse of hollow spheres and the formation of multiple shear bands.


2020 ◽  
Vol 992 ◽  
pp. 364-368
Author(s):  
Elena E. Mastalygina ◽  
K. Smirnov ◽  
V.Yu. Chukhlanov

The syntactic foams based on polymethylphenylsiloxane resin filled by hollow glass microspheres were developed for using in different applications of construction industry. Thermophysical properties of the developed syntactic foams were analyzed in this work. According to the study results, with an increase of polymethylphenylsiloxane content in the syntactic foam, the thermal conductivity and the specific heat capacity increased. The coefficient of thermal linear expansion was dependent on the ratio of the components, reaching the lowest value for the composites with a minimum binder content.


2020 ◽  
Vol 38 (7A) ◽  
pp. 960-966
Author(s):  
Aseel M. Abdullah ◽  
Hussein Jaber ◽  
Hanaa A. Al-Kaisy

In the present study, the impact strength, flexural modulus, and wear rate of poly methyl methacrylate (PMMA) with eggshell powder (ESP) composites have been investigated. The PMMA used as a matrix material reinforced with ESP at two different states (including untreated eggshell powder (UTESP) and treated eggshell powder (TESP)). Both UTESP and TESP were mixed with PMMA at different weight fractions ranged from (1-5) wt.%. The results revealed that the mechanical properties of the PMMA/ESP composites were enhanced steadily with increasing eggshell contents. The samples with 5 wt.% of UTESP and TESP additions give the maximum values of impact strength, about twice the value of the pure PMMA sample. The calcination process of eggshells powders gives better properties of the PMMA samples compared with the UTESP at the same weight fraction due to improvements in the interface bond between the matrix and particles. The wear characteristics of the PMMA composites decrease by about 57% with increases the weight fraction of TESP up to 5 wt.%. The flexural modulus values are slightly enhanced by increasing of the ESP contents in the PMMA composites.


Sign in / Sign up

Export Citation Format

Share Document