Influence of the Particle Size on the Rheology of Magnetorheological Elastomer

2014 ◽  
Vol 809-810 ◽  
pp. 757-763 ◽  
Author(s):  
Qian Jin ◽  
Yong Gang Xu ◽  
Yang Di ◽  
Hao Fan

In this paper, the correlation between the particle size and rheological properties of MRE was discussed through both experimental results and theoretical analysis. It shows that the particle size can significantly influence the magnetorheological effect by changing the initial shear modulus and the saturated magnetic-induced shear modulus . With an increase in the particle size, the initial shear modulus gets lower, and the saturated magnetic-induced shear modulus increases to the maximum and then decreases. The larger the particle size is, the longer the distance between neighbor particles along the magnetic field is. Based on the relationship between the particle size and shear modulus, there exists an optimum size for added particles. Moreover, the performance of MRE can be improved by optimizing the particle size based on those rules.

2021 ◽  
Vol 1037 ◽  
pp. 141-147
Author(s):  
Andrey Minaev ◽  
Juri Korovkin ◽  
Hammat Valiev ◽  
G.V. Stepanov ◽  
Dmitry Yu. Borin

Experimental studies magnetorheological elastomer specimens dynamic properties under the magnetic fields action on the vibrostend are carried out. Amplitude-frequency characteristics have been obtained. The magnetic field effect on the silicone magnetoreactive elastomers deformation properties and damping coefficients experimentally is established.


1993 ◽  
Vol 10 (4) ◽  
pp. 275-277
Author(s):  
J.O. Murphy ◽  
J.M. Lopez ◽  
C.P. Dyt

AbstractThe effect of varying magnetic field strength on the frequency of oscillatory motions for cellular multimode magnetoconvection has been investigated. In addition the influence of the thermal, viscous and magnetic diffusivities have been taken into account and the range of preferred horizontal scales established. The relationship between the period of oscillation and the magnetic field strength is determined.


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
L. Wang ◽  
Q. M. Ren ◽  
J. C. Han ◽  
Y. D. Zhang

To eliminate the jump points of multipole angle values after subdivision at low temperature, the magnetic field and temperature field characteristics of a multipole magnetic encoder are analyzed in this study, and the effect of changes in magnetic field strength and temperature field on the precision of angle values is studied. To eliminate the jump point of multipole angle values caused by changes in the temperature field, the suppression method based on single-pole angle value fitting is proposed. The error between the single-pole and multipole angle values is tabulated by the oversampling linear interpolation method, and the precision of fitting single-pole to multipole angle values is effectively improved. The error of the angle value caused by changes in the temperature field is studied and analyzed, and the relationship between the jump angle values and the pole number of the multipole magnetic encoder is obtained. Furthermore, the jump point is compensated for by the jump range of the multipole angle values. Finally, the angle accuracy of the multipole magnetic encoder in a cryogenic chamber is experimentally verified. The experimental results show that the low-temperature jump point compensation method proposed for the multipole magnetic encoder in this paper can effectively suppress the jump of the angle values.


2017 ◽  
Vol 38 (4) ◽  
pp. 555-565
Author(s):  
Alicja Przybył ◽  
Rafał Rakoczy ◽  
Maciej Konopacki ◽  
Marian Kordas ◽  
Radosław Drozd ◽  
...  

Abstract The aim of the study was to present an experimental investigation of the influence of the RMF on mixing time. The obtained results suggest that the homogenization time for the tested experimental set-up depending on the frequency of the RMF can be worked out by means of the relationship between the dimensionless mixing time number and the Reynolds number. It was shown that the magnetic field can be applied successfully to mixing liquids.


2012 ◽  
Vol 503 ◽  
pp. 3-7
Author(s):  
Meng Zhao ◽  
Ji Bin Zou ◽  
Jing Shang

According to researching the spin traveling wave pump, the relationship of the characteristics of magnetic fluid and the press is investigated under the spin magnetic field by the theory method. The relationship of moving, magnetic field and press is investigated by the decoupled computation between the magnetic field and force. The method is scientificity and rationality by the testing. The distributing shape of magnetic fluid in the pump is affected by the adding magnetic field under the spin magnetic field when the magnetic fluid is filled in the pump. At the same time, the adding magnetic field is affected by magnetic particles of magnetic fluid. The magnetic fluid can be moved by the effect of the adding magnetic field in the pump. The flux of magnetic fluid increases with the magnetic field.


2010 ◽  
Vol 28 (9) ◽  
pp. 1695-1702 ◽  
Author(s):  
T. Xiao ◽  
Q. Q. Shi ◽  
T. L. Zhang ◽  
S. Y. Fu ◽  
L. Li ◽  
...  

Abstract. Interplanetary linear magnetic holes (LMHs) are structures in which the magnetic field magnitude decreases with little change in the field direction. They are a 10–30% subset of all interplanetary magnetic holes (MHs). Using magnetic field and plasma measurements obtained by Cluster-C1, we surveyed the LMHs in the solar wind at 1 AU. In total 567 interplanetary LMHs are identified from the magnetic field data when Cluster-C1 was in the solar wind from 2001 to 2004. We studied the relationship between the durations and the magnetic field orientations, as well as that of the scales and the field orientations of LMHs in the solar wind. It is found that the geometrical structure of the LMHs in the solar wind at 1 AU is consistent with rotational ellipsoid and the ratio of scales along and across the magnetic field is about 1.93:1. In other words, the structure is elongated along the magnetic field at 1 AU. The occurrence rate of LMHs in the solar wind at 1 AU is about 3.7 per day. It is shown that not only the occurrence rate but also the geometrical shape of interplanetary LMHs has no significant change from 0.72 AU to 1 AU in comparison with previous studies. It is thus inferred that most of interplanetary LMHs observed at 1 AU are formed and fully developed before 0.72 AU. The present results help us to study the formation mechanism of the LMHs in the solar wind.


2011 ◽  
Vol 101-102 ◽  
pp. 202-206 ◽  
Author(s):  
Guo Liang Hu ◽  
Miao Guo ◽  
Wei Hua Li

In this study, the MRE was manufactured, and the sandwich beam was also fabricated by treating with MRE between two thin aluminum layers. The experiment test rig was set up to investigate the vibration response of the MRE sandwich beam under non-homogeneous magnetic field. The experimental results show that the MRE sandwich beam had the capabilities of left shifting first natural frequency when the magnetic field was increased in the activated regions. It is also obvious that the first natural frequency of the MRE sandwich beam decreased as the magnetic field that applied on the beam was moved from the clamped end of the beam to the free end of the beam.


Sign in / Sign up

Export Citation Format

Share Document