Preparation and Properties of Up-Conversion Luminescent NaYF4:Yb3+, Er3+ Ceramics

2016 ◽  
Vol 848 ◽  
pp. 262-271
Author(s):  
Wen Yan Cheng ◽  
Shi Jia Gu ◽  
Bei Ying Zhou ◽  
Lian Jun Wang ◽  
Wei Luo ◽  
...  

A series of ytterbium and erbium co-doped sodium yttrium fluoride (NaYF4:Yb3+, Er3+) ceramics have been successfully prepared by pressureless sintering. The ceramic samples were characterized by X-ray diffraction (XRD), photoluminescence (PL), density and field emission scanning electron microscope (FESEM). The results showed that the phases of the NaYF4:Yb3+, Er3+ ceramic samples transformed when the sintering temperature was changed. The ceramic samples sintered below 600 oC contained both cubic α-NaYF4:Yb3+, Er3+ and hexagonal β-NaYF4:Yb3+, Er3+. The sample sintered at 600oC is the pure hexagonal β-NaYF4:Yb3+, Er3+. When the sintering temperature is above 600 oC, the ceramic samples present the α-NaYF4:Yb3+, Er3+ again. The fluorescence intensity increased firstly and then decreased with the sintering temperature increasing. The luminous intensity of the sample sintered at 600 oC was the highest. The densities of as-prepared ceramic sample increased with the sintering temperature rising. The samples sintered at 600 oC with different holding time possessed the similar crystal phases (β-NaYF4:Yb3+, Er3+) and fluorescence intensity. As the holding time increased, the densities of the samples increased. To obtain more dense ceramics, the ceramics using β-NaYF4:Yb3+, Er3+ powders were prepared by spark plasma sintering (SPS). The maximum relative density reached 97%.

2010 ◽  
Vol 654-656 ◽  
pp. 2158-2161 ◽  
Author(s):  
Eri Miura-Fujiwara ◽  
Takeshi Teramoto ◽  
Hisashi Sato ◽  
Equo Kobayashi ◽  
Yoshimi Watanabe

This study aims at producing porous Ti filled with biodegradable materials for biomedical implants by means of spark plasma sintering method (SPS). To improve bone fixation and to obtain appropriate Young’s modulus as a medical implant material, we applied -tri calcium phosphate (-TCP) to the Ti-based composite. Ti/-TCP powder mixtures were sintered by SPS under applied stress of 45MPa with various temperatures and holding time. Vickers hardness (Hv) of obtained composite increased with increasing the holding time up to 10 min, and saturated hardness was approximately 750 Hv, which is extremely higher than that of bulk Ti. Hardness also increased as sintering temperature increased up to 1473 K. From the results of microstructure observations by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDXS), O- and P- containing Ti surrounded around Ti particle, and O diffused into Ti particle to a certain extent. X-ray diffraction results indicated several kinds of Ti-O and/or Ti-P formed in the specimen. Results indicated that it is the brittle phases formed during sintering that increased the hardness.


2021 ◽  
Vol 1016 ◽  
pp. 1790-1796
Author(s):  
Maxim Syrtanov ◽  
Egor Kashkarov ◽  
Tatyana Murashkina ◽  
Nahum Travitzky

This paper describes the influence of sintering temperature on phase composition and microstructure of paper-derived Ti3AlC2 composites fabricated by spark plasma sintering. The composites were sintered at 100 MPa pressure in the temperature range of 1150-1350 °C. Phase composition and microstructure were analyzed by X-ray diffraction and scanning electron microscopy, respectively. The multiphase structure was observed in the sintered composites consisting of Ti3AlC2, Ti2AlC, TiC and Al2O3 phases. The decomposition of the Ti3AlC2 phase into Ti2AlC and TiC carbide phases was observed with temperature rise. The total content of Ti3AlC2 and Ti2AlC phases was reduced from 84.5 vol.% (1150 °C) to 69.5 vol.% (1350 °C). The density of composites affected by both the content of TiC phase and changes in porosity.


2013 ◽  
Vol 746 ◽  
pp. 220-228
Author(s):  
Jonathan C.G. Sanchez ◽  
Jose A. Andraca ◽  
David V. Jaramillo ◽  
Fernando L. Juárez

Spark plasma sintering was carried out to densify Ni-alloy doped with Pt powder at temperatures ranging between 1273 and 1323 K in order to obtain a variety of microstructures. Homogeneous distribution Pt and full densification were achieved in a short time, and the overall processing time not was exceeding 30 min via SPS process. Phase constitutions and microstructures and porosity evaluation were investigated by using scanning electron microscopy, chemical analysis and X-ray diffraction. It was found that two new phases ζ-PtAl2 and α-NiPt (Al). The set conditions are very promising from an energy-saving viewpoint; total powder consolidation was obtained per a decrease of 200 °C in the sintering temperature by using spark plasma sintering.


2008 ◽  
Vol 403 ◽  
pp. 139-140 ◽  
Author(s):  
R. Sivakumar ◽  
K. Aoyagi ◽  
T. Watanabe ◽  
T. Akiyama

–sialons (Si6-zAlzOzN8-z, z=3) synthesized by mechanically activated combustion synthesis (MA-CS) at a low N2 pressure of 1 MPa, were sintered by Spark Plasma Sintering (SPS) and thermal conductivity was measured at room temperatures. Specimens were fully densified at 1600oC for 10 mins. and showed only –sialon phases confirmed by x-ray diffraction patterns though un-reacted Si was present as impurities after MA-CS. Thermal conductivities increased with sintering temperature and had a maximum value 5.49 W m-1 K-1 for specimens sintered at 1700oC.


2016 ◽  
Vol 881 ◽  
pp. 307-312
Author(s):  
Luis Antonio C. Ybarra ◽  
Afonso Chimanski ◽  
Sergio Gama ◽  
Ricardo A.G. da Silva ◽  
Izabel Fernanda Machado ◽  
...  

Tungsten carbide (WC) based composites are usually produced with cobalt, but this binder has the inconvenience of shortage, unstable price and potential carcinogenicity. The objective of this study was to develop WC composite with intermetallic Fe3Al matrix. Powders of WC, iron and aluminum, with composition WC-10 wt% Fe3Al, and 0.5 wt% zinc stearate were milled in a vibration mill for 6 h and sintered in a SPS (spark plasma sintering) furnace at 1150 °C for 8 min under pressure of 30 MPa. Measured density and microstructure analysis showed that the composite had significant densification during the (low-temperature, short time) sintering, and X-ray diffraction analysis showed the formation of intermetallic Fe3Al. Analysis by Vickers indentation resulted in hardness of 11.2 GPa and fracture toughness of 24.6 MPa.m1/2, showing the feasibility of producing dense WC-Fe3Al composite with high mechanical properties using the SPS technique.


2014 ◽  
Vol 1061-1062 ◽  
pp. 83-86
Author(s):  
Hong Wu ◽  
De Yi Zheng

In this paper, the effects of different sintering temperature on the microstructure and piezoelectric properties of Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3(PNZZT) ceramic samples were investigated. The Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 ceramics materials was prepared by a conventional mixed oxide method. In the period of the experiment, the relationship between crystallographic phase and microstructure were analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM) respectively. The XRD patterns shows that all of the ceramic samples are with a tetragonal perovskite structure. Along with sintering temperature increased and the x is 0.03, the grain size gradually become big. Through this experiment, it has been found that when the x is 0.03 and sintered at 1130°C for 2 h, the grains grow well, the grain-boundary intersection of the sample combined well and the porosity of the ceramics decreased, an excellent comprehensive electrical properties of the Pb(Nb2/3Zn1/3)0.03(Zr52Ti48)0.97O3 samples can be obtained. Its best electrical properties are as follows: dielectric constant (ε) is 1105, dielectric loss(tg) is 0.017, electromechanical coupling coefficient (Kp) is 0.287, piezoelectric constant(d33) is 150PC/N


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1276 ◽  
Author(s):  
Dariusz Garbiec ◽  
Volf Leshchynsky ◽  
Alberto Colella ◽  
Paolo Matteazzi ◽  
Piotr Siwak

Combining high energy ball milling and spark plasma sintering is one of the most promising technologies in materials science. The mechanical alloying process enables the production of nanostructured composite powders that can be successfully spark plasma sintered in a very short time, while preserving the nanostructure and enhancing the mechanical properties of the composite. Composites with MAX phases are among the most promising materials. In this study, Ti/SiC composite powder was produced by high energy ball milling and then consolidated by spark plasma sintering. During both processes, Ti3SiC2, TiC and Ti5Si3 phases were formed. Scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction study showed that the phase composition of the spark plasma sintered composites consists mainly of Ti3SiC2 and a mixture of TiC and Ti5Si3 phases which have a different indentation size effect. The influence of the sintering temperature on the Ti-SiC composite structure and properties is defined. The effect of the Ti3SiC2 MAX phase grain growth was found at a sintering temperature of 1400–1450 °C. The indentation size effect at the nanoscale for Ti3SiC2, TiC+Ti5Si3 and SiC-Ti phases is analyzed on the basis of the strain gradient plasticity theory and the equation constants were defined.


2010 ◽  
Vol 654-656 ◽  
pp. 819-822
Author(s):  
Genki Kikuchi ◽  
Hiroshi Izui ◽  
Yuya Takahashi ◽  
Shota Fujino

In this study, we focused on the sintering performance of Ti-4.5Al-3V-2Mo-2Fe (SP-700) and mechanical properties of SP-700 reinforced with titanium boride (TiB/SP-700) fabricated by spark plasma sintering (SPS). TiB whiskers formed in titanium by a solid-state reaction of titanium and TiB2 particles were analyzed with scanning electron microscopy and X-ray diffraction. The TiB/SP-700 was sintered at temperatures of 1073, 1173, and 1273 K and a pressure of 70 MPa for 10, 30, and 50 min. The volume fraction of TiB ranged from 1.7 vol.% to 19.9 vol.%. Tensile tests of TiB/SP-700 were conducted at room temperature, and the effect of TiB volume fraction on the tensile properties was investigated.


2007 ◽  
Vol 336-338 ◽  
pp. 1868-1871 ◽  
Author(s):  
Cheng Fu Yang ◽  
Chien Min Cheng ◽  
Ho Hua Chung ◽  
Chao Chin Chan

5~15 wt% MgO-CaO-Al2O3-SiO2 (MCAS, fabricated by sol-gel method) glass is used as the sintering aid of AlN ceramics. The sintering is proceeded from 1350oC~1550oC, scanning electron microscope is used to observe the sintered morphologies and X-ray diffraction pattern are used to confirm the crystal structures. From the SEM observations, as 10wt% and 15wt% MCAS is added, AlN ceramics can be densified at 1500oC and 1450oC, which are much lower than the before studies were. From the X-ray diffraction patterns, the crystal phases of MCAS-AlN ceramics are AlN, Al2O3, and cordierite phases. In this study, the dielectric characteristics of MCAS-AlN ceramics are also developed as a function of MCAS content and sintering temperature.


2016 ◽  
Vol 704 ◽  
pp. 183-189
Author(s):  
Yong Jun Su ◽  
Yi Feng Zheng ◽  
De Liang Zhang ◽  
Fan Tao Kong

TiAl alloy with a composition of Ti-43Al-5V-4Nb-Y (at.%) was prepared by spark plasma sintering (SPS). The TiAl powders were sintered between 650°C and 1300°C for 5 min under different loads. With the increasing of the temperature, the diffusion of the elements can be observed. Full compaction is achieved in a short period of time and the overall processing duration does not exceed 30 min. A fully lamellar structure was seen in the TiAl alloy after heat treatment. The microstructures of the samples were determined by X-ray diffraction and scanning electron microscopy. Their mechanical properties were evaluated by tensile tests performed at room temperature


Sign in / Sign up

Export Citation Format

Share Document