Influence of Annealing Treatment on Microstructure and Mechanical Properties of Fe-Cu-Si-Al Amorphous Composites

2016 ◽  
Vol 849 ◽  
pp. 71-75
Author(s):  
Yan Chun Zhao ◽  
Wen Long Ma ◽  
Xiao Peng Yuan ◽  
Zhi Ping Zhao ◽  
Ming Yuan Huang ◽  
...  

In this study, the bulk amorphous alloys with 3mm in diameter were prepared at different voltages adopting copper mould suction casting method by adding microelement Al to Fe-Cu-Si based amorphous alloy respectively. The microstructures, glass-forming ability, mechanical compressive properties of (Fe0.34Cu0.47Si0.19)95Al5 amorphous composites annealed in different temperature were investigated. The results showed that re-melting of master alloy refined the solidified microstructure and homogenize the composition and microstructure. Moreover, the microstructure was stable with the increase of re-melting times. After relaxation and annealing at low temperature the majority of residual thermal stress was released during annealing at low temperature, with the enlargement of short-range order of amorphous microstructure and the decrease of the most adjacent inter-atomic distance. After proper annealing treatment the hardness and thermal stability of alloy were improved, indicating that the annealing treatment could improve the properties of amorphous alloy.

2012 ◽  
Vol 271-272 ◽  
pp. 36-41
Author(s):  
Wei Yuan Yu ◽  
Wen Jiang Lu ◽  
Nai Rui Li

Al85Ni10Zr3Y2 and Al80Ni10Zr8-xCuxY2(x=1,2,3,5) alloy ribbons had been prepared by single roller melt-spinning process under vacuum conditions. The ribbons were investigated by X–ray diffraction and differential scanning calorimetry (DSC). The results revealed the strong effect of content of Cu、Zr elements on the glass forming ability and the thermal stability of the alloys. The formation of amorphous alloys are sensitive to contens of these two elements. The completely amorphous alloy or the primary amorphous phase alloy can be obtained when the content of Cu or Zr reach an optimization, otherwise only gaining crystal phase. Al80Ni10Zr7Cu1Y2 and Al80Ni10Zr3Cu5Y2 alloys possess the excellent glass forming ability, which can form the completely amorphous alloy or the composite material of the partial crystal in remaining amorphous.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 383 ◽  
Author(s):  
Xuan Liu ◽  
Xingfu Wang ◽  
Yongli Si ◽  
Xiaokang Zhong ◽  
Fusheng Han

In this study, the formation and crystallization of the Al70Fe12.5V12.5Nb5 amorphous alloys has been investigated. The addition of Nb enhances the supercooled liquid region and glass forming ability of the Al-Fe-V amorphous alloys. The Al70Fe12.5V12.5Nb5 amorphous alloy exhibits two distinct crystallization steps and a large supercooled liquid region at more than 100 K. Kissinger and Ozawa analyses showed that the two activation energies for crystallization (Ex) were estimated to be 366.3 ± 23.9 and 380.5 ± 23.9 kJ/mol. Large supercooled liquid regions are expected to gain an application field of Al-based amorphous alloys.


2014 ◽  
Vol 216 ◽  
pp. 35-38 ◽  
Author(s):  
Cosmin Codrean ◽  
Dragoş Buzdugan ◽  
Ramona Lǎzar ◽  
Viorel Aurel Şerban ◽  
Ion Mitelea

Ni based amorphous alloys with Si and B, which can also, contains Fe and Cr, prepared by rapid solidification, have low melting temperatures. This fact increases their susceptibility to be joined by welding and brazing. The glass forming ability (GFA) is conditioned also by the crystallization delay, due to certain chemical composition of the alloys. The thermal stability of these alloys was revealed by DTA analysis and structural characteristics were investigated by XRD. Applying an annealing at temperatures between 420°C and 540°C, with 30 minutes maintaining time, allowed the investigation of phase occurred during the crystallization and the estimation of the crystalline grains dimensions.


2021 ◽  
Author(s):  
Hai-Po Cui ◽  
Wei-Dong Zhang ◽  
Cheng-Li Song

Abstract In this work, (Zr55Cu30Al10Ni5)100−xScx (x = 0, 0.5, 1.0, and 1.5) amorphous alloys were fabricated through steel die casting. The effects of scandium on the properties of zirconium-based amorphous alloys have been studied. The results show that the glass-forming ability of amorphous alloys increases at first and then decreases with the increase of Sc content. The highest glass-forming ability is obtained when the atomic fraction of Sc is 0.5%, which enables the production of 2-mm-thick amorphous alloy ingots. Meanwhile, the thermal stability and mechanical properties of the alloy are optimised with the atomic fraction of Sc of 1.0%. In addition, by adding an appropriate amount of Sc, the corrosion resistance of Zr–Cu–Al–Ni alloys is enhanced, particularly in the acid solution. The lowest average corrosion rate for samples in acid solution is obtained with the alloy containing atomic fraction of Sc of 1.0%. Therefore, results of this study indicate that the Zr-based amorphous alloy containing scandium has the potential for manufacturing fracture internal fixation or surgical devices.


2013 ◽  
Vol 850-851 ◽  
pp. 62-65
Author(s):  
Yi Liu ◽  
Yan Fang Wang ◽  
Li Jun Xiao ◽  
Ming Xing Liu ◽  
Zhi Qiang Shi

The (Cu50Zr45Al5)100-XYX(x=0, 1, 2, and 3) alloys samples were prepared by copper mold suction casting method. The effect of the addition of Y on the structure, glass-forming ability, thermal stability and corrosion behaviors of the base BMG (Cu50Zr45Al5) were investigated by means of XRD, DSC, DTA and electrochemical polarization. The results showed that Cu10Zr7and Zr2Cu phases are precipitated when Y addition exceeds 3at%, otherwise the alloys are fully amorphous state. Minor addition Y improved the thermal stability of the base alloy. The corrosion resistance of BMG alloy is deteriorated in 3.5% NaCl solution with addition of Y element as indicated by the corrosion potential and corrosion current density.


2007 ◽  
Vol 22 (2) ◽  
pp. 486-492 ◽  
Author(s):  
Seok-Woo Lee ◽  
Sang-Chul Lee ◽  
Yu-Chan Kim ◽  
E. Fleury ◽  
Jae-Chul Lee

We synthesized bulk amorphous alloy systems of Cu43Zr43Al7X7 (X = Be, Ag; numbers indicate at.%), with the objective of simultaneously enhancing the glass-forming ability (GFA) and the plasticity. The alloys not only exhibit high plasticity (∼7%, ∼8%), but also possess enhanced GFA (alloys with 12 and 8 mm diameter). The possible mechanisms underlying this enhanced GFA and plasticity exhibited by these alloys are discussed based on the atomic-packing state and atomistic-scale compositional separation associated with the mixing enthalpy difference. A strategy for designing bulk amorphous alloys with simultaneous improvement in the GFA and the plasticity is proposed from the viewpoint of atomic-packing state and atomistic-scale phase separation.


Open Physics ◽  
2004 ◽  
Vol 2 (1) ◽  
Author(s):  
M. Shapaan ◽  
J. Lábár ◽  
L. Varga ◽  
J. Lendvai

AbstractGlass-forming ability (GFA) and thermal stability of Fe62Nb8B30, Fe62Nb6Zr2B30 and Fe72Zr8B20 at % amorphous alloys were investigated by calorimetric (DSC and DTA) measurements. The crystallization kinetics was studied by DSC in the mode of continuous versus linear heating and it was found that both the glass transition temperature, Tg, and the crystallization peak temperature, Tp, display strong dependence on the heating rate. The partial replacement of Nb by Zr leads to lower Tg and Tx temperatures and causes a decrease of the supercooled liquid region. JMA analysis of isothermal transformation data measured between Tg and Tx suggests that the crystallization of the Fe62Nb8B30 and Fe62Nb6Zr2B30 amorphous alloys take place by three-dimensional growth with constant nucleation rate. Nb enhances the precipitation of the metastable Fe23B6 phase and stabilizes it up to the third crystallization stage. Zr addition increases the lattice constant of Fe23B6 and, at the same time, decreases the grain size.


2005 ◽  
Vol 486-487 ◽  
pp. 497-500 ◽  
Author(s):  
S. Jayalakshmi ◽  
Eric Fleury ◽  
Yu Chan Kim ◽  
Ki Bae Kim

Zr50Ni27Nb18Co5 amorphous ribbons were hydrogenated using an electrochemical method. Under a current density of 30 mA/cm2, the thermal stability of the amorphous phase was found to increase with the charging time. Hardness and fracture strength were found to be independent of charging time, indicating that the Zr-Ni-Nb-Co amorphous alloys preserved its mechanical integrity.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 881
Author(s):  
Darling Perea ◽  
Carolina Parra ◽  
Parthiban Ramasamy ◽  
Mihai Stoica ◽  
Jürgen Eckert ◽  
...  

Alloying elements play an important role in adjusting the magnetic and thermal properties of Fe-based amorphous alloys. In this work, the effect of Mo addition on the thermal stability, structural evolution, and magnetic properties of Fe76Si9B10P5 metallic glass was studied. The study revealed that the substitution of a small amount of Mo (1 at.%) for Si enhances the glass-forming ability (GFA) but reduces the thermal stability of the alloy, causing a reduction of the supercooled liquid region. Substitution of up to 3 at.% Mo for Si lowers the Curie temperature from 677 to 550 K and the saturation magnetization drops from 160 to 138 Am2/kg. The structural evolution was evaluated by annealing the glassy samples at different temperatures, revealing that the crystallization proceeds in multiple steps, beginning with the formation of different iron borides (FeB, Fe2B, FeB2 and Fe23B6) followed by transformation to a mixture of more stable phases.


Sign in / Sign up

Export Citation Format

Share Document