Properties of Steel Mill Sludge Waste Incorporated in Fired Clay Brick

2016 ◽  
Vol 857 ◽  
pp. 358-362 ◽  
Author(s):  
Aeslina Abdul Kadir ◽  
Mohd Ruzaini Abd Jalil ◽  
Mohd Mustafa Al Bakri Abdullah

Brick is one of the most common masonry units as a building material due to its properties. Many attempts have been made to incorporate different types of sludge waste into brick such as marble sludge, stone sludge, water treatment sludge, sewage sludge, desalination sludge, textile laundry sludge, ceramic sludge and steel mill sludge. SMS is waste that produced from steel manufacturing industry. This sludge is normally disposed at a hazardous waste landfill site. The objective of this study is to investigate the properties of sludge waste incorporated in fired clay brick. The characteristic of heavy metals in steel mill sludge were determined by using XRF. Characteristic of steel mill sludge shows that some of the heavy metals in steel mill sludge shows higher concentration by following this descending order Zn>Cu>Pb>Sn>Cr>Ba. Four different mixing ratios of steel mill sludge at (0%, 5%, 10%, 15%) were incorporated into fired clay brick to obtain the properties and compared with control brick and standards. In this study, physical and mechanical properties such as shrinkage, density, initial rate of suction and compressive strength test were conducted in the laboratory. Through this study, the results indicate that addition of 5% steel mill sludge into bricks shows the best quality of brick with high compressive strength (16.78N/mm2) and low initial rate of suction (3.80 g/mm2). Nevertheless, the density and shrinkage for all bricks still comply with the requirement and suitable for different work applications. Furthermore, by incorporating sludge waste into fired clay brick could provide an environmental friendly way of disposal method.

2014 ◽  
Vol 1025-1026 ◽  
pp. 117-121
Author(s):  
Aeslina binti Abdul Kadir ◽  
Ahmad Shayuti Bin Abdul Rahim ◽  
Hidra Hasbee Bin Jamil

Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for an example marble sludge, stone sludge, water sludge, sewage sludge and ceramic sludge. The utilization of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. Therefore, the objective of this study is to incorporate different percentages of mosaic sludge and investigate heavy metals leachability from the mosaic sludge brick. Heavy metals leachability was conducted by using toxicity characteristic leaching procedure (TCLP). Physical and mechanical properties were also determined which are compressive strength, shrinkage, density and initial rate of suction. From the results obtained, it shows that fired clay brick with 5% of mosaic sludge obtained the best result with highest compressive strength and low initial rate of suction (18.76N/mm2 and 10.08 g/mm2) respectively. Nevertheless, all the other properties for all bricks incorporated with different percentages of mosaic sludge were also complied with the BS 3921:1985 standard. The results also demonstrated that the leachability of potential heavy metals in mosaic brick were complied with USEPA (1996) and EPAV (2005a) regulatory limit. In conclusion, mosaic sludge could be an alternative low cost material for fired clay brick as well as providing a disposal method for mosaic sludge waste.


2014 ◽  
Vol 803 ◽  
pp. 203-208 ◽  
Author(s):  
A.S. Abdul Rahim ◽  
Aeslina binti Abdul Kadir

Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for example marble sludge, stone sludge, water sludge, sewage sludge, and ceramic sludge. The utilisation of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. Therefore, this study focus on the incorporation of mosaic sludge into fired clay brick. Physical and mechanical properties were conducted such as compressive strength, shrinkage, density and initial rate of suction test. From the results, it shows that brick with 5% of mosaic sludge obtained the best result with highest compressive strength and low initial rate of suction (18.76N/mm2 and 10.08 g/mm2) respectively. Nevertheless, all the other properties for all bricks incorporated with different percentages of mosaic sludge were complied with the standard. In conclusion, mosaic sludge could be an alternative low cost material for brick and at the same time provide a disposal method for mosaic sludge waste.


2016 ◽  
Vol 857 ◽  
pp. 347-351
Author(s):  
Aeslina Abdul Kadir ◽  
Muhammad Khuzaimy Kamarul Halim ◽  
Noor Amira Sarani ◽  
Mohd Mustafa Al Bakri Abdullah

The reuse of sludge in clay brick material is a long-term approach to sludge disposal for economic and environmental sustainability. In this study, steel mill sludge collected from Kluang, Johor was used to be investigated to replace clay as brick material. The raw material has been characterized using X Ray Fluorescent (XRF) analysis. The optimum moisture content (OMC) and maximum dry density (MDD) of the soil used was performed by using Standard Proctor Compaction Test in order to verify percentages of water used during brick manufacturing. Brick were manufactured into different percentages which are control brick (0%) and steel mill sludge brick with 5%, 10% and 15% of steel mill sludge waste. Manufactured brick was dried and fired in a furnace at 1050 °C. The results showed that zinc (Zn) and copper (Cu) are the higher heavy metal concentrations detected in steel mill sludge. Meanwhile, leachability test showed that heavy metals leached from steel mill sludge brick are low under permissible limit and complied with United States Environmental Protection Agency (USEPA).


2014 ◽  
Vol 803 ◽  
pp. 233-238 ◽  
Author(s):  
A.A. Kadir ◽  
H.H. Jamil ◽  
A.S. Abdul Rahim

The amount of sludge wastes from industrial, mining, domestic agriculture activities are about 60200 tons per year. The increasing of the waste will have significant impact towards environment and energy conservation. Many attempts have been made to incorporate sludge waste into brick for example fly ash sludge, sewage sludge, water sludge and ceramic sludge and advantages on the properties have been found but heavy metals leachibility will be the main concerned. Therefore, sludge waste is a potential alternative to convert into useful products as a building material that can alleviate the disposal problems. Therefore, in this study, the characteristics of heavy metals were determined by using XRF. Four different mixing ratios of mosaic sludge waste at (0%, 1%, 5%, and 10%) were incorporated into fired clay brick. Each brick was fired in a heat controlled furnace at elevated temperatures of 1050°C. The characteristic of heavy metals from the sludge waste were determined by XRF and the result show that the sludge waste is high in iron (Fe) and Zicronium (Zr) followed by Barium (Br), Chromium (Cr), Cadmium (Cd), Copper (Cu) and Zinc (Zn). The leachability of heavy metals from the manufactured mosaic sludge brick were determined by using toxicity characteristic leachibility procedure (TCLP) and the results demonstrated that the culprit heavy metals were all complied to USEPA(1996) and EPAV(2005a).


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2800
Author(s):  
Nur Jannah Abdul Hamid ◽  
Aeslina Abdul Kadir ◽  
Nurul Nabila Huda Hashar ◽  
Paweł Pietrusiewicz ◽  
Marcin Nabiałek ◽  
...  

Wastewater treatment activities in the chemical industry have generated abundant gypsum waste, classified as scheduled waste (SW205) under the Environmental Quality Regulations 2005. The waste needs to be disposed into a secure landfill due to the high heavy metals content which is becoming a threat to the environment. Hence, an alternative disposal method was evaluated by recycling the waste into fired clay brick. The brick samples were incorporated with different percentages of gypsum waste (0% as control, 10, 20, 30, 40 and 50%) and were fired at 1050 °C using 1 °C per minute heating rate. Shrinkage, dry density, initial rate of suction (IRS) and compressive strength tests were conducted to determine the physical and mechanical properties of the brick, while the synthetic precipitation leaching procedure (SPLP) was performed to scrutinize the leachability of heavy metals from the crushed brick samples. The results showed that the properties would decrease through the incorporation of gypsum waste and indicated the best result at 10% of waste utilization with 47.5% of shrinkage, 1.37% of dry density, 22.87% of IRS and 28.3% of compressive strength. In addition, the leachability test highlighted that the concentrations of Fe and Al was significantly reduced up to 100% from 4884 to 3.13 ppm (Fe) and from 16,134 to 0.81 ppm (Al), respectively. The heavy metals content in the bricks were oxidized during the firing process, which signified the successful remediation of heavy metals in the samples. Based on the permissible incorporation of gypsum waste into fired clay brick, this study promised a more green disposing method for gypsum waste, and insight as a potential towards achieving a sustainable end product.


2015 ◽  
Vol 773-774 ◽  
pp. 1063-1067
Author(s):  
Noor Amira Sarani ◽  
Aeslina Abdul Kadir

Recently waste material pollution is a critical issue in every developing country. The factors such as increasing of growing population, daily and industrial activities will lead to these phenomena. These issues give an idea to use waste as a construction material that will give minimum impact towards the environment. Many researchers have been studied on waste material such as organic waste, sludge, fly ash, rice husk and processed waste tea into fired clay brick. In this study, the investigate on the incorporating of cigarette butts (CBs) was conducted. During this study, different percentages of CBs (0%, 2.5% and 5.0%) were added into fired clay brick. Meanwhile, different heating rates were applied during the firing stage, which are 1°C/min, 3°C/min and 5°C/min respectively. All samples were fired up to 1050°C. Leaching tests were carried out to investigate the possibility of heavy metals leached from the manufactured brick. The results demonstrated that, in terms of physical and mechanical properties, CB Brick (2.5%) at 1°C/min improved the most and leached low heavy metals. For IAQ test, CB Brick (2.5%) fired at 1°C/min is acceptable to be used as building materials since it complied with ICOP-IAQ.


2016 ◽  
Vol 857 ◽  
pp. 352-357
Author(s):  
Aeslina binti Abdul Kadir ◽  
Nur Athirah Ideris ◽  
Ahmad Shayuti Abdul Rahim

Mosaic sludge is sewerage from mosaic industrial activities such as cutting, polishing and grinding. This sludge mostly will be disposed directly to landfill and some of it was discharged in drainage system without proper treatment. Therefore, in this study, mosaic sludge from the mosaic industry were reused and incorporated into fired clay brick in order to provide alternative disposal method, producing adequate quality of brick as well as minimizing the heavy metal leachability to the environment. First, X-Ray Fluorescence (XRF) was conducted to determine the heavy metal concentration from two types of mosaic sludge. The results indicate that the highest element concentration in mosaic sludge (BS and PS) shows that Barium is the highest with 3253ppm and 3260ppm. On the raw sludge, the lowest obtained in BS and PS is Cesium with 14ppm and 17ppm. SPLP and TCLP also conducted in this study and the results show that, even though the element such as ferum (Fe) and cadmium (Cd) was not detected in XRF but in SPLP and TCLP, it shows that these two elements exist in clay, BS and PS with low concentration. In term of properties, compressive strength was conducted by incorporating 0%, 1%, 5%, 10%, 20% and 30% bodymill and polishing sludge into fired clay brick. The results show that compressive strength of BS brick was stronger than PS brick. Lastly, Static Leachate Test (SLT) was conducted to measure the long term leachability of heavy metals from different percentages of mosaic sludge brick. In SLT result, ferum (Fe) shows the highest value of heavy metal concentration among other elements. The results for control brick, BS brick and PS brick show the same pattern and far from the limit set by USEPA.


2011 ◽  
Vol 374-377 ◽  
pp. 1637-1640
Author(s):  
Jian Hua Xue ◽  
Xiao Guang Li ◽  
Yun Xiao Liu ◽  
Qiang Du

Recycled concrete aggregate (RCA) and crushed clay bricks (CCB) have been increasingly researched and used in past two decades. However, studies focusing on the properties of dry-mortar with RCA and CCB are very limited. In this research, results from physical and mechanical properties of recycled mortar with fine recycled aggregate (FRA), fine recycled powder (FRP) and crushed clay brick (CCB) were secured. It is shown that sinking degree of FRA mortar can be adjusted in the range of 70-90mm and their water-maintainability is superior to natural sand mortar. However, compressive strength of FRA mortar at various ages decrease, compared to natural sand mortar under the condition of same mixed proportion. Compressive strength of FRA mortar is above 5.0MPa with mass ratio of aggregate to cement lower than 6.0.Workability of FRP and CCB mortar is similar to fly ash mortar and their apparent densities are under the 2.0g/cm3. Compressive strength of FRP and CCB mortar is near to 8.5 MPa at 28 days of age.


2013 ◽  
Vol 421 ◽  
pp. 201-204
Author(s):  
Aeslina binti Abdul Kadir ◽  
Abbas Mohajerani

In general, firing process in brick manufacturing could affect the properties, colours and appearance of the brick. The main purpose of this study was to evaluate the effect of different heating rates on physical and mechanical properties during the firing of standard bricks and bricks incorporated with cigarette butt (CB). In this investigation, two different heating rates were used: slow heating rate (2oC min-1) and fast heating rate (5oC min-1). Samples were fired in solid forms from room temperature to 1050oC. All bricks were tested for their physical and mechanical properties including compressive strength, initial rate of absorption and density. Higher heating rates decrease compressive strength value but slightly increase the initial rate of absorption and density properties respectively. In conclusion, higher heating rates are able to produce adequate physical and mechanical properties especially for CB Brick.


2016 ◽  
Vol 673 ◽  
pp. 213-222 ◽  
Author(s):  
Aeslina Abdul Kadir ◽  
Siti Noorhajar Mohd Zulkifly ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Noor Amira Sarani

Over the year, agricultural establishment produced many types of waste in its daily operation. Coconut fibre for example is one of the most abundant agricultural wastes produced in Malaysia. Despite the massive amount of the waste produced, the standards of waste management in Malaysia are still poor. The main purpose of this study is to focus on the potential of coconut fibre utilization into fired clay bricks. The objectives of this study are to determine the characteristics of coconut fibre, to identify the gas emissions during firing process from coconut fibre brick and to investigate the physical and mechanical properties of from coconut fibre (1%, 3% and 5%) incorporation into fired clay brick. All the bricks were fired in a furnace up to 1050°C at 1°C/min. The gas emissions that were measured are carbon monoxide (CO), carbon dioxide (CO2) and sulphur dioxide (SO2). Based on the three gases, the results showed that CO2 is the highest gas emission produced during the firing process. Physical and mechanical properties tested are total shrinkage, dry density and compressive strength. Results found that by adding different percentages of coconut fibre, most of the properties were complied with the standards except for the compressive strength of 5% of coconut fibre in clay brick. Therefore, the utilization of coconut fibre could be one of the alternative disposal methods for agriculture waste and it will also provide low-cost material for brick that produce adequate physical and mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document