Physical and Mechanical Properties of Fired Clay Bricks Incorporated with Cigarette Butts: Comparison between Slow and Fast Heating Rates

2013 ◽  
Vol 421 ◽  
pp. 201-204
Author(s):  
Aeslina binti Abdul Kadir ◽  
Abbas Mohajerani

In general, firing process in brick manufacturing could affect the properties, colours and appearance of the brick. The main purpose of this study was to evaluate the effect of different heating rates on physical and mechanical properties during the firing of standard bricks and bricks incorporated with cigarette butt (CB). In this investigation, two different heating rates were used: slow heating rate (2oC min-1) and fast heating rate (5oC min-1). Samples were fired in solid forms from room temperature to 1050oC. All bricks were tested for their physical and mechanical properties including compressive strength, initial rate of absorption and density. Higher heating rates decrease compressive strength value but slightly increase the initial rate of absorption and density properties respectively. In conclusion, higher heating rates are able to produce adequate physical and mechanical properties especially for CB Brick.

2014 ◽  
Vol 1025-1026 ◽  
pp. 445-450 ◽  
Author(s):  
Ashwary Pande ◽  
Salil Sainis ◽  
Santhosh Rajaraman ◽  
Geetha Manivasagam ◽  
M. Nageswara Rao

A comparison between slow heating to aging temperature and direct charging at aging temperature on the microstructure and mechanical properties obtained after the aging was established for the metastable beta (β) titanium alloy Ti-15V-3Cr-3Al-3Sn. The alloy was subjected to two single aging (SA) and two duplex aging (DA) conditions, with two heating rates to aging temperature: (i) low heating rate of 5 oC/min (ii) direct charging into a furnace heated to aging temperature. The microstructure analysis was carried out using Field Emission Scanning Electron Microscopy. Mechanical Testing was carried to evaluate Ultimate Tensile Strength (UTS), 0.2% Yield Strength (YS), % Elongation (%El.), % Reduction in area (%RA) and hardness. In the case of SA samples aged at 500 °C for 8 h and 500 °C for 10 h, heating rate of 5 °C/min to aging temperature resulted in a finer microstructure but did not help in achieving better strength-ductility combination compared to direct charging. Lower rate of heating allows enough dwell time in the temperature range 250-300 oC for pre-precipitation reaction to occur which aids in fine scale precipitation of alpha phase during aging. In the case of DA samples aged at 250 oC for 24 h followed by 500 oC for 8 h and 300 oC for 10 h followed by 500 oC for 10 h, no tangible difference between lower rate of heating and direct charging was observed in mechanical properties or microstructure. This is believed to be due to the pre-aging steps 250 oC/24 h or 300 oC/10h in the two DA treatments, which create finely distributed precursors thereby leaving no scope for the heating rate to play a role.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6023
Author(s):  
Euichul Hwang ◽  
Gyuyong Kim ◽  
Gyeongcheol Choe ◽  
Minho Yoon ◽  
Minjae Son ◽  
...  

In this study, the effects of heating rate and compressive strength on the spalling behavior of single-sided heated ring-restrained concrete with compressive strengths of 60 and 100 MPa were investigated. The vapor pressure and restrained stress inside the concrete were evaluated under fast- and slow-heating conditions. Regardless of the heating rate, the concrete vapor pressure and restrained stress increased as the temperature increased, and it was confirmed that spalling occurred in the 100-MPa concrete. Specifically, it was found that moisture migration and restrained stress inside the concrete varied depending on the heating rate. Under fast heating, moisture clogging and restrained stress occurred across the concrete surface, causing continuous surface spalling for the 100-MPa concrete. Under slow heating, moisture clogging occurred, and restrained stress continuously increased in the deep area of the concrete cross-section owing to the small internal temperature difference, resulting in explosive spalling for the 100-MPa concrete with a dense internal structure. Additionally, while the tensile strength of concrete is reduced by heating, stress in the heated surface direction is generated by restrained stress. The combination of stress in the heated concrete surface and the internal vapor pressure generates spalling. The experimental results confirm that heating rate has a significant influence on moisture migration and restrained stress occurrence inside concrete, which are important factors that determine the type of spalling.


2016 ◽  
Vol 673 ◽  
pp. 213-222 ◽  
Author(s):  
Aeslina Abdul Kadir ◽  
Siti Noorhajar Mohd Zulkifly ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Noor Amira Sarani

Over the year, agricultural establishment produced many types of waste in its daily operation. Coconut fibre for example is one of the most abundant agricultural wastes produced in Malaysia. Despite the massive amount of the waste produced, the standards of waste management in Malaysia are still poor. The main purpose of this study is to focus on the potential of coconut fibre utilization into fired clay bricks. The objectives of this study are to determine the characteristics of coconut fibre, to identify the gas emissions during firing process from coconut fibre brick and to investigate the physical and mechanical properties of from coconut fibre (1%, 3% and 5%) incorporation into fired clay brick. All the bricks were fired in a furnace up to 1050°C at 1°C/min. The gas emissions that were measured are carbon monoxide (CO), carbon dioxide (CO2) and sulphur dioxide (SO2). Based on the three gases, the results showed that CO2 is the highest gas emission produced during the firing process. Physical and mechanical properties tested are total shrinkage, dry density and compressive strength. Results found that by adding different percentages of coconut fibre, most of the properties were complied with the standards except for the compressive strength of 5% of coconut fibre in clay brick. Therefore, the utilization of coconut fibre could be one of the alternative disposal methods for agriculture waste and it will also provide low-cost material for brick that produce adequate physical and mechanical properties.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1425-1430 ◽  
Author(s):  
David Obenland ◽  
Paul Neipp ◽  
Bruce Mackey ◽  
Lisa Neven

Yellow- and white-fleshed peach [Prunus persica (L.) Batsch] and nectarine [Prunus persica (L.) Batsch var. nectarina (Ait) Maxim.] cultivars of mid- and late-season maturity classes were subjected to combined controlled atmosphere–temperature treatment system (CATTS) using heating rates of either 12 °C/hour (slow rate) or 24 °C/hour (fast rate) with a final chamber temperature of 46 °C, while maintaining a controlled atmosphere (CA) of 1 kPa oxygen and 15 kPa carbon dioxide. Fruit seed surface temperatures generally reached 45 °C within 160 minutes and 135 minutes for the slow and fast heating rate, respectively. The total duration of the slow heating rate treatment was 3 hours, while 2.5 h was required for the fast heating rate treatment. Following treatment the fruit were stored at 1 °C for either 1, 2, or 3 weeks followed by a ripening period of 2 to 4 d at 23 °C and subsequent evaluation of fruit quality. Fruit quality was similar for both heating rate treatments. Compared with the untreated controls, CATTS fruit displayed higher amounts of surface injury, although increased injury was only an important factor to marketability in cultivars that had high amounts of surface injury before treatment. The percentage of free juice in the flesh was slightly less in CATTS fruit early in storage but was often greater in treated fruit toward the end of the storage period. Slower rates of softening during fruit ripening were apparent in CATTS fruit. Soluble solids, acidity, weight loss and color all were either not affected or changed to a very small degree as a result of CATTS. Members of a trained sensory panel preferred the taste of untreated fruit over fruit that had been CATTS but the ratings of treated and nontreated fruit were generally similar and it is unclear whether an average consumer could detect the difference. Although further work needs to be done regarding the influence of CATTS on taste, it otherwise appears that CATTS does not adversely affect the marketability of good quality fruit and therefore shows promise as a nonchemical quarantine treatment for peaches and nectarines.


2014 ◽  
Vol 803 ◽  
pp. 203-208 ◽  
Author(s):  
A.S. Abdul Rahim ◽  
Aeslina binti Abdul Kadir

Brick is one of the most common masonry units used as building material. Due to the demand, different types of waste have been investigated to be incorporated into the bricks. Many types of sludge have been incorporated in fired clay brick for example marble sludge, stone sludge, water sludge, sewage sludge, and ceramic sludge. The utilisation of these waste materials in fired clay bricks usually has positive effects on the properties such as lightweight bricks with improved shrinkage, porosity, and strength. Therefore, this study focus on the incorporation of mosaic sludge into fired clay brick. Physical and mechanical properties were conducted such as compressive strength, shrinkage, density and initial rate of suction test. From the results, it shows that brick with 5% of mosaic sludge obtained the best result with highest compressive strength and low initial rate of suction (18.76N/mm2 and 10.08 g/mm2) respectively. Nevertheless, all the other properties for all bricks incorporated with different percentages of mosaic sludge were complied with the standard. In conclusion, mosaic sludge could be an alternative low cost material for brick and at the same time provide a disposal method for mosaic sludge waste.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


CivilEng ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 523-540
Author(s):  
Imed Beghoura ◽  
Joao Castro-Gomes

This study focuses on the development of an alkali-activated lightweight foamed material (AA-LFM) with enhanced density. Several mixes of tungsten waste mud (TWM), grounded waste glass (WG), and metakaolin (MK) were produced. Al powder as a foaming agent was added, varying from 0.009 w.% to 0.05 w.% of precursor weight. Expanded granulated cork (EGC) particles were incorporated (10% to 40% of the total volume of precursors). The physical and mechanical properties of the foamed materials obtained, the effects of the amount of the foaming agent and the percentage of cork particles added varying from 10 vol.% to 40% are presented and discussed. Highly porous structures were obtained, Pore size and cork particles distribution are critical parameters in determining the density and strength of the foams. The compressive strength results with different densities of AA-LFM obtained by modifying the foaming agent and cork particles are also presented and discussed. Mechanical properties of the cured structure are adequate for lightweight prefabricated building elements and components.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Eethar Thanon Dawood ◽  
Mahyuddin Ramli

This study was conducted to determine some physical and mechanical properties of high-strength flowable mortar reinforced with different percentages of palm fiber (0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6% as volumetric fractions). The density, compressive strength, flexural strength, and toughness index were tested to determine the mechanical properties of this mortar. Test results illustrate that the inclusion of this fiber reduces the density of mortar. The use of 0.6% of palm fiber increases the compressive strength and flexural strength by about 15.1%, and 16%, respectively; besides, the toughness index (I5) of the high-strength flowable mortar has been significantly enhanced by the use of 1% and more of palm fiber.


2010 ◽  
Vol 168-170 ◽  
pp. 564-569
Author(s):  
Guang Lin Yuan ◽  
Jing Wei Zhang ◽  
Jian Wen Chen ◽  
Dan Yu Zhu

This paper makes an experimental study of mechanical properties of high-strength pumpcrete under fire, and the effects of heating rate, heating temperature and cooling mode on the residual compressive strength(RCS) of high-strength pumpcrete are investigated. The results show that under air cooling, the strength deterioration speed of high-strength concrete after high temperature increases with the increase of concrete strength grade. Also, the higher heating temperature is, the lower residual compressive strength value is. At the same heating rate (10°C/min), the residual compressive strength of C45 concrete after water cooling is a little higher than that after air cooling; but the test results are just the opposite for C55 and C65 concrete. The strength deterioration speed of high-strength concrete after high temperature increases with the increase of heating rate, but not in proportion. And when the heating temperature rises up between 200°C and 500°C, heating rate has the most remarkable effect on the residual compressive strength of concrete. These test results provide scientific proofs for further evaluation and analysis of mechanical properties of reinforced-concrete after exposure to high temperatures.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Neslihan Doğan-Sağlamtimur ◽  
Adnan Güven ◽  
Ahmet Bilgil

Pumice, cements (CEM I- and CEM II-type), waste fly and bottom ashes (IFA, GBA, and BBA) supplied from international companies were used to produce lightweight building materials, and physical-mechanical properties of these materials were determined. Axial compressive strength (ACS) values were found above the standards of 4 and 8 MPa (Bims Concrete (BC) 40 and 80 kgf/cm2 class) for cemented (CEM I) pumice-based samples. On the contrary, the ACS values of the pumice-based cemented (CEM II) samples could not be reached to these standards. Best ACS results (compatible with BC80) from these cemented lightweight material samples produced with the ashes were found in 50% mixing ratio as 10.6, 13.2, and 20.5 MPa for BBA + CEM I, GBA + CEM II, and IFA + CEM I, respectively, and produced with pumice were found as 8.4 MPa (same value) for GBA + pumice + CEM II (in 25% mixing ratio), BBA + pumice + CEM I (in 100% mixing ratio), and pumice + IFA + CEM I (in 100% mixing ratio), respectively. According to the results, cemented ash-based lightweight building material produced with and without pumice could widely be used for constructive purposes. As a result of this study, an important input to the ecosystem has been provided using waste ashes, whose storage constitutes a problem.


Sign in / Sign up

Export Citation Format

Share Document