On the Elaboration of Metal-Ceramic Composite Coatings by Laser Cladding

2016 ◽  
Vol 879 ◽  
pp. 1288-1293 ◽  
Author(s):  
Anne Mertens ◽  
Thibaut L’Hoest ◽  
Julien Magnien ◽  
Raoul Carrus ◽  
Jacqueline Lecomte-Beckers

This paper reports on a preliminary investigation into the elaboration, by the additive process known as laser cladding, of composite coatings with a matrix of stainless steel 316L reinforced with varying contents of tungsten (WC) or silicon carbides (SiC) particles. Laser cladding is characterised by ultra-fast solidification and cooling rates, thus giving rise to ultra-fine out-of-equilibrium microstructures and potentially enhanced mechanical properties. Both types of composite coatings – i.e. with SiC or WC ‒ are compared in terms of their microstructures and hardness. Special attention is given to the dissolution of the carbides particles and to interfacial reactions taking place between the particles and the metallic matrix.

2021 ◽  
pp. 1-34
Author(s):  
Peter Renner ◽  
Swarn Jha ◽  
Yan Chen ◽  
Tariq Chagouri ◽  
Serge Kazadi ◽  
...  

Abstract Effective design of corrosion-resistant coatings is critical for the protection of metals and alloys. Many state-of-the-art corrosion-resistant coatings are unable to satisfy the challenges in extreme environments for tribological applications, such as elevated or cryogenic temperatures, high mechanical loads and impacts, severe wear, chemical attack, or a combination of these. The nature of challenging conditions demands that coatings have high corrosion and wear resistance, sustained friction control, and maintain surface integrity. In this research, multi-performance metal-ceramic composite coatings were developed for applications in harsh environments. These coatings were developed with an easy to fabricate, low-cost, and safe procedure. The coating consisted of boron nitride, graphite, silicon carbide, and transition metals such as chromium or nickel using epoxy as vehicle and bonding agent. Salt spray corrosion tests showed that 1010 carbon steel (1/4 hard temper) substrates lost 20-100× more mass than the coatings. The potentiodynamic polarization study showed better performance of the coatings by seven orders of magnitude in terms of corrosion relative to the substrate. Additionally, the corrosion rates of the coatings with Ni as an additive were five orders of magnitude lower than reported. The coefficient of friction of coatings was as low as 0.1, five to six times lower than that of epoxy and lower than a wide range of epoxy resin-based coatings found in literature. Coatings developed here exhibited potential in applications in challenging environments for tribological applications.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Andrea Angelastro ◽  
Sabina L. Campanelli ◽  
Giuseppe Casalino ◽  
Antonio D. Ludovico

As a surface coating technique, laser cladding (LC) has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F) and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr) composite coatings were fabricated by the multilayer laser cladding technique (MLC). An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 813
Author(s):  
Binghui Tang ◽  
Yefa Tan ◽  
Ting Xu ◽  
Zhidan Sun ◽  
Xiaotun Li

The effect of TiB2 particles content (10–40 wt.%) on the microstructure, mechanical properties and tribological properties of TiB2-reinforced Inconel 718 alloy composite coatings by laser cladding was investigated. From the perspective of solidification thermodynamics and dynamics, when the TiB2 particles content increases from 10 to 30 wt.%, the cooling rate increases for the increase in thermal conductivity and thermal diffusion coefficient, leading to the decrease in dendrite size, and the uniformity of TiB2 particles becomes better for the decrease in the critical capture speed of the solid–liquid interface, causing the improvement of microhardness and tribological properties. However, when the TiB2 particles content is too high (40 wt.%), the cooling rate decreases for the increase in heat released by solidification, so the dendrite size increases, and the Marangoni convection is too weak to drive the rearrangement of TiB2 particles, leading to the heterogeneous microstructure, large fluctuation of microhardness and the deterioration of tribological properties. When the TiB2 particles content is 30 wt.%, the composite coating has the finest and densest dendrites and evenly distributed TiB2 particles, the bonding strength is as high as 1.714 GPa, the microhardness is up to 844.33 HV0.2, which is 2.98 times that of Inconel 718 alloy coating, and the friction coefficient and the wear rate are 0.355 and 9.12 × 10−7 g/(N·m), which are 22.99% and 83.86% lower than those of the Inconel 718 alloy coating.


2010 ◽  
Vol 658 ◽  
pp. 228-231 ◽  
Author(s):  
Jae Ho Lee ◽  
Dong Bok Lee

The metal/ceramic composite coatings that consisted of (Ni-22Cr-10Al-1Y) and (ZrO2-25CeO2-2.5Y2O3) were prepared by the air plasma spray (APS) method. The as-sprayed coatings consisted of metal-rich and ceramic-rich regions, between which the -Al2O3 oxide stringers existed owing to the oxidation of Al in (Ni-22Cr-10Al-1Y) during APS. The composite coatings were hot corroded at 800 and 900 oC for up to 50 h in 75%NaCl-25%Na2SO4 molten salt. The corrosion products that formed on the coating surface during hot corrosion were mostly dissolved off into the molten salt. The scales that remained on the coating surface consisted primarily of Cr2O3, and a lesser amount of NiO and Al2O3. The corrosion resistance decreased, as not only the test temperature and time but also the amount of metal in the coating increased.


2006 ◽  
Vol 45 ◽  
pp. 1240-1245 ◽  
Author(s):  
Erja Turunen ◽  
Tommi Varis ◽  
Jari Keskinen ◽  
Teppo Fält ◽  
Simo Pekka Hannula

Special nanoreinforced ceramic composite coatings were produced. Dense nanostructured alumina and chromia coatings alloyed with various nanofraction elements such as Ni, NiO, ZrO2 and SiC were manufactured by HV2000 HVOF spraying. As a result coatings with nearly 100% improvements relative fracture toughness, were produced.


Sign in / Sign up

Export Citation Format

Share Document