Effects of Electromagnetic Stirring Frequency on the Microstructure and Mechanical Properties of Al-7Si-0.42 Mg-0.1Cu Alloy by Semi-Solid Processing

2017 ◽  
Vol 898 ◽  
pp. 104-110 ◽  
Author(s):  
Peng Qi ◽  
Bo Long Li ◽  
Wen Jian Lv ◽  
Tong Bo Wang ◽  
Zuo Ren Nie

The effect of the different electromagnetic stirring frequency after low temperature pouring on microstructures and mechanical properties of Al-7Si-0.42 Mg-0.1Cu alloys was studied. It was found that the primary α-Al becomes smaller and tended to be spherical morphology, and the particles were uniformly distributed after electromagnetic stirring. The tensile strength of alloys improved gradually from 193.02 MPa to 212.54 MPa, and the elongation increased from 3.73% to 6.67% when the stirring frequency was 10 Hz. From the fracture morphology, the fracture for alloy stirred at frequency of 10 Hz showed more dimples than that without stirring. When the stirring frequency increased to 15 Hz, the microstructures of primary α-Al appeared to be dendritic structures, and the grains became coarse. As a result, the 10 Hz was the best electromagnetic stirring frequency.

2010 ◽  
Vol 150-151 ◽  
pp. 1768-1771 ◽  
Author(s):  
Feng Li ◽  
Yong Jun Hu ◽  
Xiao Ling Cheng ◽  
Xiao Ting Xiao

In this work, the effect of stirring time on the solidifed microstructures and mechanical properties of semi-solid Sn-Bi slurry was investigated by the mechanical stirring method. The results indicated that a fine round granular solidifed structure of Sn-Bi semi-solid slurry was obtained at 142 and stirred for 8 min. Compared with the Sn-Bi alloy prepared conventional die casting, the mechamical properties of semi-solid Sn-Bi alloy was improved prominently. The percentage elongation of semi-solid Sn-Bi alloy was increased 67 % compared with that of the Sn-Bi alloy prepared conventional die casting.


2014 ◽  
Vol 496-500 ◽  
pp. 336-339
Author(s):  
Nisachon Khunbanterng ◽  
Sirikul Wisutmethangoon ◽  
Thawatchai Plookphol ◽  
Jessada Wannasin

Semi-solid 2024 Al alloys with strontium (Sr) addition of 0.15 wt% and 0.3 wt% were prepared by Gas Induced Semi-Solid (GISS) process. Effect of Sr addition on the microstructure and mechanical properties of the semi-solid 2024 alloy was investigated. It was found that the tensile strength and % elongation of the T6 heat treated alloy with the Sr addition were higher than those without Sr addition owing to the reduction of Mg2Si phase formation. The semi-solid 2024 Al alloy with 0.15%Sr addition obtained the average highest tensile strength of 382 MPa and elongation of 6.45%.


2011 ◽  
Vol 686 ◽  
pp. 96-100
Author(s):  
Shu Bo Li ◽  
Han Li ◽  
Jian Hui Li ◽  
Wen Bo Du ◽  
Zhao Hui Wang

The microstructures and mechanical properties of the Mg-Zn-Er alloys have been investigated. The results show that the alloying elements (Zn/Er) with different ratio have a great effect on the microstructure and mechanical properties of the magnesium alloys, especially for the phase constitutes. Furthermore, the more attractive result is that the quasicrystalline phase, as the main secondary phase, precipitates during solidification in the alloy with addition of Zn/Er ration of 6. The cast Mg-5Zn-0.83Er alloy exhibits the ultimate tensile strength and yield tensile strength are 190MPa and 80MPa at room temperature, respectively, with an elongation of 15%.


2011 ◽  
Vol 686 ◽  
pp. 253-259
Author(s):  
Xu Ning ◽  
Wei Dong Xie ◽  
Chun Mei Dang ◽  
Xiao Dong Peng ◽  
Yan Yang ◽  
...  

A series of Mg-6Al-2Sr-1.5Y-xNd (x=0, 0.3, 0.6, 0.9, 1.2) alloy samples were prepared and their microstructures were observed and mechanical properties were measured. The existing forms of Y and Nd were studied. The effects of Y and Nd on microstructure and mechanical properties of AJ62 alloy were investigated. The results show that the main existing forms of Y and Nd in AJ62 alloy are Al2Y and Al2Nd. The combined addition of rare earth Y and Nd can refine α-Mg matrix obviously and reduce the amount of the β-Mg17Al12phases; after solid solution treatment, the tensile strength of the alloys rise first and fall later with increasing content of Nd. When the content of Nd is about 0.6%wt, the values of tensile strengthes are up to the maximum both at room temperature and at 448 K.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 351
Author(s):  
Tai-Jung Wu ◽  
Sheng-Long Jeng ◽  
Junn-Yuan Huang

This study investigated the impact of electromagnetic stirring (EMS) on nickel-base alloy welds prepared with the gas tungsten arc welding process. Alloy 52 and its variants, Alloy 52M and Alloy 52MSS, were carefully evaluated with their weld microstructure and mechanical properties. The results showed that the welds exhibited a typical microstructure of dendrites, and that the dendrites could be refined by electromagnetic stirring. Meanwhile, with an application of EMS, the precipitates became smaller and more evenly distributed in the inter-dendritic areas. Ti(N,C)s, Nb/(Nb,Si)Cs, and large-scale Laves phase with (Nb,Mo,Ti)Cs were the precipitates present in the Alloy 52, Alloy 52M, and Alloy 52MSS welds, respectively. With the refined microstructure, both Alloy 52 and Alloy 52M welds were observed to have an increase in their tensile strength, with a decrease in their elongations. Comparatively, for the Alloy 52MSS weld, the tensile strength was enhanced along with a slight increase in elongation. Deep and dense dimples were a dominant feature of low-Nb-additions welds, and dendrite-like features were found prevalent among the Alloy 52MSS welds. With EMS, the dimples of Alloy 52 welds and the dendrite-like features of Alloy 52MSS welds became finer, while the dimples of Alloy 52M welds grew coarser.


2010 ◽  
Vol 148-149 ◽  
pp. 346-352
Author(s):  
Dong Nan Li ◽  
Wen Zhe Chen ◽  
Jun Tian

The semi-solid slurry of AZ91D magnesium alloy was prepared by twin-screw stirring mixer, the microstructure and mechanical properties of semi-solid formed magnesium alloy AZ91D produced by rheo-diecasting and conventional liquid die casting were investigated, respectively. The strengthen mechanism of the semi-solid formed magnesium alloy after heat treatment was analysed by EDS. The results show that the mechanical properties of semi-solid formed magnesium alloy can be enhanced markedly by T4 and T6 heat treatment, owing to decrease of the porosity and less segregation in casting, brittle eutectic compounds dissolves gradually into α-Mg matrix, and the primary phase α-Mg decomposes in the course of heat treatment. In as-cast state, the tensile strength, elongation and hardness of semi-solid formed magnesium alloy AZ91D are 222MPa, 2.3% and 74 HBS, respectively. In T4 heat treatment state, the tensile strength and elongation are increased by 13% and 210%, and in T6 heat treatment state, the tensile strength and hardness are increased by 11% and 16%. The mechanical properties of castings formed by conventional liquid die casting are deteriorated distinctly after T6 heat treatment due to its porosity and crack defects.


2013 ◽  
Vol 312 ◽  
pp. 411-414 ◽  
Author(s):  
C.F. Fang ◽  
L.G. Meng ◽  
Y.F. Wu ◽  
L.H. Wang ◽  
X.G. Zhang

The effect of Gd addition on the microstructures and mechanical properties of Mg-5Sn-Zn-Al alloy was investigated with variations of Gd contents. These results show that adding Gd can effectively refine the grain size and growth. In addition, the solubility of Gd increases the lattice constants ofα-Mg phase. Accordingly, the tensile properties of the as-cast Mg-5Sn-Zn-Al alloy are improved by the addition of Gd. The Mg-5Sn-Zn-Al-0.4Gd exhibits the highest tensile properties, and the values of the yield and ultimate tensile strength and elongation are 111 MPa, 188 MPa and 18.0%, respectively.


2012 ◽  
Vol 192-193 ◽  
pp. 257-260 ◽  
Author(s):  
Hong Min Guo ◽  
Xiang Jie Yang ◽  
Shu Guo Zhang ◽  
Lei Luo

Several rheocasting processes have been developed or applied in the world. One of the new rheocasting processes is the limited angular oscillation (LAO), in which the molten metal is rapidly cooled and slightly mixed during initial stages of solidification. Squeeze casting (SQC) using semi-solid slurry produced by LAO (Rheo-SQC) has been developed. Microstructure and mechanical properties of squeeze cast semi-solid slurries have been investigated. Complete parts with little defects have been produced. The ultimate tensile strength and elongation of semi-solid cast samples are higher than those of the liquid cast samples. It can be concluded that the rheo-SQC is a feasible process.


2013 ◽  
Vol 747-748 ◽  
pp. 282-288
Author(s):  
Bao Liang Shi ◽  
Tian Jiao Luo ◽  
Rui Dong Liu ◽  
Xu Guang Dong ◽  
Jing Wang ◽  
...  

The influence of trace strontium (Sr) addition on the microstructure and mechanical properties of Mg-8Al-1Nd-0.5Zn was investigated with OM, SEM, and XRD etc. The results show that the lamellar eutectics and divorcedβ-Mg17Al12were reduced or refined with trace Sr addition. Among the as-cast Mg-8Al-1Nd-0.5Zn-xSr alloys, the Mg-8Al-1Nd-0.5Zn-0.05Sr alloy exhibited the best mechanical properties in which the tensile strength, the yield strength reached to 244.9 MPa and 111.7 MPa respectively. In addition, with the increase of Sr addition, the ductility was improved and it was observed that the number of cleavage steps and secondary cracks decreased on the fracture surfaces of tensile samples. It was also observed that the fractures occurred in the coarseβ-Mg17Al12phase instead of the Mg/Mg17Al12interface or Al11Nd3phase.


2015 ◽  
Vol 816 ◽  
pp. 439-445 ◽  
Author(s):  
Xiao Hui Feng ◽  
Hong Min Jia ◽  
Tian Jiao Luo ◽  
Yun Teng Liu ◽  
Ji Xue Zhou ◽  
...  

The microstructure and mechanical properties of the high-purity magnesium (99.99wt.% Mg) extruded by single direct extrusion experiment were investigated. For the extrusion speed of 0.2mm/s, the microstructure of extruded Mg rods was composed of equiaxed fine dynamical recrystallized (DRXed) grains and some elongated coarse un-DRXed grains. The yield strength (YS) and the elongation of the extruded bars were 105.3MPa and 46.7% respectively. In the case of extrusion speed of 4.0mm/s, the DRXed grains were remarkably coarsened and the elongated coarse un-DRXed grains vanished, meanwhile lots of twins occurred and the intensity of basal-plane texture increased a little. With the extrusion speed being raised from 0.2mm/s to 4.0mm/s, the YS and the elongation decreased to 60.5MPa and 22.1% respectively, but the ultimate tensile strength (UTS) was improved from 154.7MPa to 178.8MPa.


Sign in / Sign up

Export Citation Format

Share Document