Effect of Annealing Temperature on Microstructure and Properties of Ultra Purified Ferritic Stainless Steel Containing Copper

2018 ◽  
Vol 913 ◽  
pp. 270-276
Author(s):  
Hong Xiang Yin ◽  
Yi Wu ◽  
Ai Min Zhao ◽  
Zheng Zhi Zhao ◽  
Qiu Qin Fu

The effects of annealing temperature on microstructure, mechanical properties, formability, and texture evolution were analyzed in the article. The microstructure of the steel obtained through different annealing processes were investigated by means of transmission electron microscopy; The micro texture of steel was measured by using electron back scattering diffraction analysis; The relationship between Cu precipitates and matrix was analyzed by using the selected area diffraction technology. The results show that when annealing temperature was 700 ~ 850 °C, the yield strength and tensile strength first decreased slightly and then increased, while the elongation accordingly first increased then decreased slightly. The best mechanical property and formability were obtained at 800 °C. Cu precipitates reduced with the increase of annealing temperature and it accorded with K - S relationship with matrix. The grains near the {111} < 112 > orientation grew up selectively. The higher the temperature, the more the γ fiber texture content. But at higher temperature (850 °C), γ texture was damaged and the content was reduced.

Author(s):  
P. R. Swann ◽  
W. R. Duff ◽  
R. M. Fisher

Recently we have investigated the phase equilibria and antiphase domain structures of Fe-Al alloys containing from 18 to 50 at.% Al by transmission electron microscopy and Mössbauer techniques. This study has revealed that none of the published phase diagrams are correct, although the one proposed by Rimlinger agrees most closely with our results to be published separately. In this paper observations by transmission electron microscopy relating to the nucleation of disorder in Fe-24% Al will be described. Figure 1 shows the structure after heating this alloy to 776.6°C and quenching. The white areas are B2 micro-domains corresponding to regions of disorder which form at the annealing temperature and re-order during the quench. By examining specimens heated in a temperature gradient of 2°C/cm it is possible to determine the effect of temperature on the disordering reaction very precisely. It was found that disorder begins at existing antiphase domain boundaries but that at a slightly higher temperature (1°C) it also occurs by homogeneous nucleation within the domains. A small (∼ .01°C) further increase in temperature caused these micro-domains to completely fill the specimen.


2007 ◽  
Vol 550 ◽  
pp. 193-198
Author(s):  
Edgar F. Rauch ◽  
G. Shigesato

The dislocation substructure that appears in deformed metals and alloys have been extensively investigated in the past by transmission electron microscopy (TEM). They are known to form a broad variety of microstructures. These substructures are characterized by three main parameters, namely the density of the dislocations that are trapped in the tangles, their degree of patterning and the misorientation between the cells. The aim of the present work is to investigate the relationship between these features and the mechanical properties of the material.


2020 ◽  
Vol 321 ◽  
pp. 11035
Author(s):  
E. Sukedai ◽  
E. Aeby-Gautier ◽  
M. Dehmas

A Ti-5553 specimen was continuously heated to 923 K and simultaneously in-situ HEXRD profiles were taken. In addition, specimens heated at the same rate to several temperatures up to 923 K and further quenched were observed by transmission electron microscopy. Based on both results obtained, transformation sequence was clarified, precipitations of ω-, α”iso- and α-phases were confirmed, and size and density of these precipitates were measured. Hardness values of those specimens were also measured. The hardening mechanism was considered as shearing-mechanism for specimens aged at lower temperatures and by-pass one for specimens aged at higher temperature. An attempt of distinction between α”iso - and α-precipitates was also tried. Both precipitates were in needle-like shape and a possibility was suggested by measuring angles between two needle-shape precipitates on {110} of the matrix and comparing with each other.


Crystals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 172 ◽  
Author(s):  
Eda Aydogan ◽  
Connor Rietema ◽  
Ursula Carvajal-Nunez ◽  
Sven Vogel ◽  
Meimei Li ◽  
...  

Ferritic alloys are important for nuclear reactor applications due to their microstructural stability, corrosion resistance, and favorable mechanical properties. Nanostructured ferritic alloys having a high density of Y-Ti-O rich nano-oxides (NOs < 5 nm) are found to be extremely stable at high temperatures up to ~1100 °C. This study serves to understand the effect of a high density of nano-particles on texture evolution and recrystallization mechanisms in ferritic alloys of 14YWT (14Cr-3W-0.4Ti-0.21Y-Fe wt %) having a high density of nano-particles and dispersion-free FeCrAl (13Cr-5.2Al-0.05Y-2Mo-0.2Si-1Nb wt %). In order to investigate the recrystallization mechanisms in these alloys, neutron diffraction, electron backscattered diffraction, and in situ and ex situ transmission electron microscopy have been utilized. It has been observed that even though the deformation textures of both the 14YWT and FeCrAl alloys evolved similarly, resulting in either the formation (in FeCrAl alloy) or increase (in 14YWT) in γ-fiber texture, the texture evolution during recrystallization is different. While FeCrAl alloy keeps its γ-fiber texture after recrystallization, 14YWT samples develop a ε-fiber as a result of annealing at 1100 °C, which can be attributed to the existence of NOs. In situ transmission electron microscopy annealing experiments on 14YWT show the combination and growth of the lamellar grains rather than nucleation; however, the recrystallization and growth kinetics are slower due to NOs compared to FeCrAl.


2021 ◽  
Vol 1035 ◽  
pp. 134-142
Author(s):  
Ze Yu Zhou ◽  
Xiang Xiao ◽  
Wen Jing Zhang ◽  
Feng Chun Wang ◽  
Wei Cai Ren ◽  
...  

The microstructure,texture distribution and tensile property of 7xxx ultra-thick plate was investigated by optical microscopy (OM), scanning electron microscopy (SEM), electron back scattering diffraction (EBSD), transmission electron microscopy (TEM) and tensile tests. The results show that the microstructure, texture and tensile property were inhomogeneous along the thickness direction. A large number of sub-crystals remained on the surface of the thick plate and was accompanied by much recrystallization. Most of the structures were random texture, and the proportion of typical texture was low at the edge. For the center layer, there were also a lot of recrystallized grains and typical deformed texture along the β-fiber (Brass, S, and Copper) was observed. The 1/4 layer of the plate is a transition one, and had the lowest recrystallized fraction. From surface to center, precipitation phases within grains and grain boundaries gradually coarsen, mechanical properties reduced. At the same thickness, the tensile property showed appreciable anisotropy, the L direction was the highest and the S direction was the lowest.


2017 ◽  
Vol 898 ◽  
pp. 574-578
Author(s):  
Xiao Yun Song ◽  
Yong Ling Wang ◽  
Wen Jing Zhang ◽  
Wen Jun Ye ◽  
Song Xiao Hui

In this paper, three different double annealing treatments were applied on the 3mm-thick Ti-6Al-2Sn-4Zr-1Mo-2Nb-0.2Si (Ti62421S) alloy plate. Optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile tests were used to investigate the microstructure and mechanical properties under different temperatures of Ti62421S alloy. The results show that the content of primary α phase (αp) decreases while transformed β structure (βt) increases with the increasing first-stage annealing temperature. After double annealing treatment, ordered α2 phase particles precipitate within αp and the size increases with first annealing temperature. This leads to that with increasing first annealing temperature, ultimate tensile strength (UTS) at 600~650°C increases while elongation decreases. After 1000°C/1h/AC+ 750°C/2h/AC annealing, Ti62421S alloy plate exhibits superior combination of mechanical properties at room and elevated temperatures.


1992 ◽  
Vol 287 ◽  
Author(s):  
Ivar E. Reimanis ◽  
J. J. Petrovic ◽  
H. Suematsu ◽  
T. E. Mitchell ◽  
O. S. Leung

ABSTRACTThe hardness and fracture toughness of a model two-phase composite consisting of crystalline Si3N4 particles in a matrix of amorphous Si3N4 are examined. The composite is created by heat treating high purity, partially amorphous CVD Si3N4 in N2 for various times and temperatures in order to induce crystallization of the a phase. Microindentation tests at temperatures up to 1200 °C are conducted to evaluate the high temperature hardness and fracture toughness. The role of the microstructure is examined using optical and transmission electron microscopy. Finally, the relationship between the microstructure and the mechanical properties is discussed.


Author(s):  
Mariusz Hasiak ◽  
Marzena Tkaczyk ◽  
Amadeusz Łaszcz ◽  
Jacek Olszewski

AbstractThe influence of alloying additions on the microstructure, mechanical, and magnetic properties of bulk Fe79B20Cu1, Fe79B16Ti4Cu1, Fe79B16Mo4Cu1 and Fe79B16Mn4Cu1 (at. pct) alloys was investigated. Nanocrystalline samples in the form of 3 mm rods were prepared directly by suction casting without additional heat treatment. Mössbauer spectroscopy, transmission electron microscopy and scanning electron microscopy studies confirmed that the investigated alloys consist α-Fe and Fe2B nanograins embedded in an amorphous matrix. The addition of alloying elements, such as Ti, Mo and Mn to Fe79B20Cu1 alloy increases the amount of amorphous phase and decreases the presence of Fe2B phase in all examined alloys. The mechanical properties of the samples, such as hardness, elastic modulus, and elastic energy ratio, were analysed by an instrumented indentation technique performed on a 12 × 12 nanoindentation grid. These tests allowed to characterise the mechanical properties of the regions observed in the same material. For the Fe79B20Cu1 alloy, the hardness of 1508 and 1999 HV, as well as Young’s modulus of 287 and 308 GPa, were estimated for the amorphous- and nanocrystalline-rich phase, respectively. The addition of Ti, Mo, and Mn atoms leads to a decrease in both hardness and elastic modulus for all regions in the investigated samples. Investigations of thermomagnetic characteristics show the soft magnetic properties of the studied materials. More detailed studies of magnetisation versus magnetic field curves for the Fe79B20−xMxCu1 (where x = 0 or 4; M = Ti, Mo, Mn) alloy, recorded in a wide range of temperatures, followed by the law of approach to magnetic saturation revealed the relationship between microstructure and magneto-mechanical properties.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Sign in / Sign up

Export Citation Format

Share Document