Design of New Weathering Steels through Thermodynamic Model of Nitrogen Solubility and CALPHAD

2018 ◽  
Vol 913 ◽  
pp. 620-626 ◽  
Author(s):  
Jian Cheng ◽  
Yue Hua Guo ◽  
Ming Liu ◽  
Hou Fa Shen

In this paper, a new vanadium nitrogen (V-N) microalloyed high strength weathering steel with the yield strength and tensile strength higher than 550 MPa and 650 MPa was designed and developed by using thermodynamic model of nitrogen solubility and phase diagram database of CALPHAD. Based on the established thermodynamic model, the effect of C content on nitrogen solubility in molten steel was investigated. The nitrogen solubility increases with the decrease of C content and the increase of temperature. In order to obtain higher N content in steel, C content must be controlled at a low range of 0.03~0.04%. Furthermore, an allowable concentration range of C and N was selected based on the phases quantity prediction of VN/V(C,N), (Cr, Fe)7C3, AlN and γ through the CALPHAD approach. Consequently, five new weathering steels were designed with variations of (C+N) content or N/C ratio. And then the four selected steels were cast, hot rolled and air cooled. The tensile tests at the room temperature show that the yield strength and tensile strength of steel with 0.032% C and 0.038%N satisfy the requirements of new generational weathering steel.

2012 ◽  
Vol 482-484 ◽  
pp. 1530-1533
Author(s):  
Ming Li Huang ◽  
Hua Ying Li ◽  
Hua Ding

In the present work, mechanical properties and microstructures of hot-rolled and solution-treated Fe-26Mn-6Al-1C steel (6Al steel) were investigated. Tensile tests were carried out at room temperature. The samples were characterized by using XRD, OM, SEM and TEM. The results suggested that the microstructure of the hot rolled 6Al steel was fully austenitic. After solution treatment and deformation, the microstructure was still single austenite. With the increase of the solution treatment temperatures, the strength decreased and the elongation increased. After solution treated at 1100°C for 1h, the yield strength, ultimate tensile strength and elongation were 378MPa, 756MPa and 57%.


Alloy Digest ◽  
1980 ◽  
Vol 29 (5) ◽  

Abstract REPUBLIC X-80-W is a high-strength, low-alloy steel developed to achieve a minimum yield strength of 80,000 psi in the as-hot-rolled condition. It also exhibits good fatigue performance, good bendability, and good weldability. It is available as bars and can be used in various automotive and machinery applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SA-372. Producer or source: Republic Steel Corporation.


2021 ◽  
Vol 1026 ◽  
pp. 65-73
Author(s):  
Kai Zhu ◽  
Hong Wei Yan

Both microstructure inhomogeneity and mechanical property diversity along the thickness direction in rolled thick aluminum plates have been considered to have a remarkable impact on the performance and properties of the products made from the plates. In this study, scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) characterizations of microstructure and texture types along the thickness directions of Al7055 thick plate specimens prepared using two conditions, hot-rolling and solution-quenching, were performed. To examine the mechanical properties, uniaxial tensile tests were also carried out on specimens machined from both types of thick plates, using a layered strategy along the thickness direction. The results indicate that both the microstructure and mechanical properties are inhomogeneous under the two conditions. Furthermore, it is evident that there is a hereditary relationship between the mechanical properties of the two plates—areas with higher yield strength in the as-hot-rolled plate correspond to areas with the higher yield strength in the as-solution-quenched plate


2021 ◽  
Author(s):  
Budi Arifvianto ◽  
Teguh Nur Iman ◽  
Benidiktus Tulung Prayoga ◽  
Rini Dharmastiti ◽  
Urip Agus Salim ◽  
...  

Abstract Fused filament fabrication (FFF) has become one of the most popular, practical, and low-cost additive manufacturing techniques for fabricating geometrically-complex thermoplastic polyurethane (TPU) elastomer. However, there are still some uncertainties concerning the relationship between several operating parameters applied in this technique and the mechanical properties of the processed material. In this research, the influences of extruder temperature and raster orientation on the mechanical properties of the FFF-processed TPU elastomer were studied. A series of uniaxial tensile tests was carried out to determine tensile strength, strain, and elastic modulus of TPU elastomer that had been printed with various extruder temperatures, i.e., 190–230 °C, and raster angles, i.e., 0–90°. Thermal and chemical characterizations were also conducted to support the analysis in this research. The results obviously showed the ductile and elastic characteristics of the FFF-processed TPU, with specific tensile strength and strain that could reach up to 39 MPa and 600%, respectively. The failure mechanisms operating on the FFF-processed TPU and the result of stress analysis by using the developed Mohr’s circle are also discussed in this paper. In conclusion, the extrusion temperature of 200 °C and raster angle of 0° could be preferred to be applied in the FFF process to achieve high strength and ductile TPU elastomer.


2007 ◽  
Vol 539-543 ◽  
pp. 2725-2730 ◽  
Author(s):  
T. Mrotzek ◽  
Andreas Hoffmann ◽  
U. Martin ◽  
H. Oettel

The molybdenum alloy TZM (Mo-0.5wt%Ti-0.08wt%Zr) is a commonly used structural material for high temperature applications. For these purposes a high strength at elevated temperatures and also a sufficient ductility at room temperature are being aimed. Preceding investigations revealed the existence of subgrains in hot deformed TZM. It was observed that with proceeding primary recrystallization and therefore with disappearance of subgrains the yield strength drops almost to a level of pure molybdenum. It is being assumed that the existence of a dislocation substructure has a pronounced effect on the yield strength of TZM. The aim of the present study was to evaluate the subgrain and texture formation and also to estimate the dislocation arrangement within subgrains during hot deformation. Hence, TZM rods were rolled to different degrees of deformation at a temperature above 0.5 Tm. The microstructure of the initial material was fully recrystallized. Texture formation, misorientation distributions and subgrain sizes were analyzed by electron backscattering diffraction (EBSD). Mechanical properties were characterized by tensile tests at room temperature and up to 1200°C. It was revealed, that with increasing degree of deformation a distinct substructure forms and therefore yield strength rises. Consequently, the misorientation between adjacent subgrains increases, their size decreases and a <110> fibre texture develops. To estimate the influence of texture on strength of TZM the Taylor factors are calculated from EBSD data.


2013 ◽  
Vol 209 ◽  
pp. 6-9 ◽  
Author(s):  
Rajendra Doiphode ◽  
S.V.S. Narayana Murty ◽  
Nityanand Prabhu ◽  
Bhagwati Prasad Kashyap

Mg-3Al-1Zn (AZ31) alloy was caliber rolled at 250, 300, 350, 400 and 450 °C. The effects of caliber rolling temperature on the microstructure and tensile properties were investigated. The room temperature tensile tests were carried out to failure at a strain rate of 1 x 10-4s-1. The nature of stress-strain curves obtained was found to vary with the temperature employed in caliber rolling. The yield strength and tensile strength followed a sinusoidal behaviour with increasing caliber rolling temperature but no such trend was noted in ductility. These variations in tensile properties were explained by the varying grain sizes obtained as a function of caliber rolling temperature.


2020 ◽  
Vol 402 ◽  
pp. 50-55 ◽  
Author(s):  
Muttaqin Hasan ◽  
Aulia Desri Datok Riski ◽  
Taufiq Saidi ◽  
Husaini ◽  
Putroe Nadhilah Rahman

This paper presents the flexural and splitting tensile strength of high strength concrete (HSC) with diatomite micro particles (DMP) as a mineral additive. In order to have micro particles, the diatomite from Aceh Besar District was ground and sieved with sieve size of 250 mm. The particles were then calcined at the temperature of 600 °C for 5 hours. Four mixtures were designed with different DMP to binder ratio (DMP/b). The ratio was 0%, 5%, 10% and 15%, and the water to binder ratio was 0.3. Four beam specimens with a size of 10 cm × 10 cm × 40 cm and four cylinder-specimens with 10 cm diameter and 20 cm high were prepared for each mixture. Flexural and splitting tensile tests were conducted based on ASTM C78 and ASTM C496/496M. The maximum flexural strength was reached at DMP/b of 5% while the maximum splitting tensile strength was reached at DMP/b of 0%.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1511 ◽  
Author(s):  
Nannan Zhao ◽  
Chunyan Ban ◽  
Hongfei Wang ◽  
Jianzhong Cui

The mechanical properties and electrical conductivity of 6063 aluminum alloy subjected to equal-channel angular press (ECAP) at room temperature (RT), 200 °C, and two-step temperature schedule (TST) have been investigated in this study. The TST refers to one pass at 200 °C followed by further successive pressing at RT. It is shown that this method is effective in obtaining the combination of high strength and electrical conductivity. After two passes, the higher strength can be achieved in TST condition (328 MPa yield strength and 331 MPa ultimate tensile strength), where the changing parameter is processing temperature from the first pass at 200 °C to the second pass at RT, as compared to two passes in RT condition (241 MPa yield strength and 250 MPa ultimate tensile strength) and two passes in 200 °C condition (239 MPa yield strength and 258 MPa ultimate tensile strength). This performance could be associated with grain refinement and nanosized precipitates in TST condition. Moreover, in contrast to RT condition, a higher electrical conductivity was observed in TST condition. It reveals that high strength and electrical conductivity of 6063 aluminum alloy can be obtained simultaneously by ECAP processing in TST condition because of ultrafine-grained microstructure and nanosized precipitates.


Sign in / Sign up

Export Citation Format

Share Document