scholarly journals Performance and Evaluation of Low Cost Sugarcane Bagasse - Polypropylene Biocomposites as Candidate Material for Automotive Parcel Tray

2018 ◽  
Vol 923 ◽  
pp. 40-46 ◽  
Author(s):  
Juliana Anggono ◽  
Suwandi Sugondo ◽  
Rassy Alim ◽  
Hariyati Purwaningsih ◽  
Aria Wibawa

Many auto manufacturers such as Mercedes Benz, Toyota and DaimlerChrysler have already embraced natural fiber composites into both interior and exterior parts and are looking to expand the uses of this composites. They have to balance the changing public demands of greater comfort, better driving performances, and higher safety standards with the environmental requirements. Based on the preliminary study using 20 to 30 wt.% NaOH treated sugarcane bagasse fibers to make biocomposites with polypropylene matrix, the tensile strength obtained was variably, in the range between 8.31 to 20.59 MPa. A further study was required to improve the strength of the composites in comparison with the specified flexural strength required by the industry for automotive parcel tray. The sugarcane bagasse fibers obtained from the sugar mill were used and alkali treated with 10% v/v NaOH at various soaking time of 2, 4, and 6 hours. Biocomposite samples were prepared from 25/75 wt.% ratio sugarcane fibers/polypropylene (PP). The highest tensile strength of 14.35 MPa was obtained from the samples with sugarcane fibers receiving two-hour alkali treatment. However, the highest flexural strength (37.78 MPa) was gained on the samples made from sugarcane fibers with 4 hours alkali treatment. This value has met the strength specification of two materials for current parcel trays which were made from monomaterial of polypropylene and woodboard composite which their flexural strengths were 35.6 MPa and 37.57 MPa, respectively. Structural studies using scanning electron microscopy (SEM) on the fracture surface of tensile tested samples show two different orientations of bagasse fibres in PP matrix, i.e. a group was in longitudinal orientation and other in transversal orientation.

Author(s):  
Aarushi Nigam

Abstract: Non-stop research is afoot to replace synthetic materials with green-materials for sound absorption purposes. Employing of agricultural waste as building materials has been a successful trend throughout the years. This research targets to utilize sugarcane bagasse (SB) fibers as sound barriers with sodium silicate as an adhesive. The SB fibers were treated in an alkaline solution for delignification and to improve the surface morphology. The SB fibers were casted into sheet and further tested for sound transmission loss. Experimentation revealed that the fabricated sheets can be viable option as a sound absorbing medium. A tubular porous structure was observed through Field Emission Scanning Microscope (FESEM). It has the capability to be used as a low-cost, biodegradable, and eco-friendly acoustic material as compared to glass wool and other synthetic acoustic materials. Keywords: Acoustic material, Alkali-treatment, Ambience, FESEM microscopy, Low-cost, Natural fiber, Performance, Sugarcane Bagasse, Sustainability


2017 ◽  
Vol 894 ◽  
pp. 50-55
Author(s):  
Leslie Joy L. Diaz ◽  
Stella Marie Hagad ◽  
Peter June M. Santiago

Properties of composite materials are often predicted from properties of its component materials. In the case of green composites that are typically filled with natural fibers however, a large deviation from predictions is observed due to the large property variation in natural fibers. In this study, techniques have been developed to minimize the effect of the said variations, which included the determination of a fiber useful length and critical length, and the utilization of controlled chemical treatment to remove unwanted fiber components that interfere in fiber-matrix interfacial bonding. The abaca fiber was determined to have a diameter of 190 + 2 mm in about two-thirds of the fiber length in the middle section. A large variation in fiber diameter was observed at the root and tip sections such that the diameter could be as high as 200 mm at the root while the tip tapers to 110 to 165 mm. The useful length with constant diameter was determined to be about 2000 mm at the middle section. The critical length of this useful length was found to be 3.15 mm. The tensile strength was also determined to have an average of 970 MPa when measured at 15 mm gauge lengths but is found to decrease up to 796 MPa with increasing gauge lengths up to 35 mm. This superior tensile strength of abaca is also associated to the 2-3o microfibril misorientation from the axis of the fiber. Use of the fibers in composite as continuous and unidirectional filler at 5% loading to unsaturated polyester (tensile strength of 40 MPa) resulted to a tensile strength of 48 MPa. The tensile strength increased to 71 MPa when chemically treated continuous fiber was employed. Alkali treatment at relatively high temperature improved the surface morphology of the fiber, with waxes and lignin removed from the surface and activating the surface with hydroxyl functional groups, that essentially improved the wettability of the polymer to the fiber, and densified the fiber with the closure of its lumens.


The present Investigation is aimed at utilizing low cost material Dolomite powder and waste material Quarry dust as partial replacement of cement and sand in concrete. This experimental investigation is carried out in three stages. In 1st stage M25 grade of concrete is produced by replacing cement by 0%, 6%, 12% and 18% of Dolomite Powder. In 2nd Stage concrete is produced by keeping the optimum 12% of dolomite powder as constant and sand is replaced by quarry dust in the percentage of 0%, 25%, 35% and 45%. In 3rd stage the optimum percentage of Dolomite Powder and Quarry Dust (DP+QD) Concrete are used to determine the compressive strength, split tensile strength and flexural strength of concrete and to check the flexural behavior of RCC beams. It is found that the concrete made of low cost material dolomite powder and waste material quarry dust increases the compressive strength, split tensile strength and flexural strength of concrete when compared to that of normal concrete. It also concluded that the first crack load and ultimate load of dolomite powder and quarry dust reinforced concrete beams increases when compared with normal reinforced concrete beams. From study it is concluded that the low cost material Dolomite powder & Quarry dust can be used in construction works which results in construction cost. By using natural resources the environment is protected.


2021 ◽  
Vol 31 (3) ◽  
pp. 139-144
Author(s):  
Hamza Chelali ◽  
Ahmed Meghezzi ◽  
Abir Berkouk ◽  
Mohamed Toufik Soltani ◽  
George Winning

In this study, polymer-hybrid natural fibers composites were prepared using unsaturated polyester resin (UPR) as the matrix and a filler using date palm leaf fiber (DPLF) and orange peel fiber (OPF). The effect of DPLF and OPF on mechanical behavior (tensile strength and elongation at break), moisture absorption, UPR gel time (tgel) and peak exothermic temperature (Tpeak) were determined. The composites of UPR reinforced with DPLF and OPF were processed by hand lay-up technique. The UPR weight fraction was maintained at 90%, and DPLF/OPF proportions varied so that the percentage of natural fiber was 10 wt%. Seven (07) composites were prepared (C1, C2, C3, C4, C5, C6 and C7) with different DPLF:OPF ratios (0:0, 1:0, 0.75:0.25, 0.5:0.5, 0.33:0.67, 0.25:0.75, 0:1) respectively in order to screen the possible interactions. DPLF were surface modified using 6% Alkali treatment, OPF were used without surface modification. Unlike DPLF, OPF showed considerable increase of UPR tgel and Tpeak which act as natural inhibitor. Tensile strength and fracture strength were also impacted negatively and positively depending on the different fiber proportions. Absorption tests showed a decrease in the composites hydrophobicity which increases significantly with higher DPLF proportions.


2014 ◽  
Vol 660 ◽  
pp. 285-289 ◽  
Author(s):  
Mohd Yussni Hashim ◽  
Mohd Nazrul Roslan ◽  
Shahruddin Mahzan ◽  
Mohd Zin ◽  
Saparudin Ariffin

The increase of environmental issues awareness has accelerated the utilization of renewable resources like plant fiber to be used as reinforced material in polymer composite. However, there are significant problems of compatibility between the fiber and the matrix due to weakness in the interfacial adhesion of the natural fiber with the synthetic matrices. One of the solutions to overcome this problem is using chemical modification like alkali treatment. In this study, the impact of alkali treatment conditions on short randomly oriented kenaf fiber reinforced polyester matrix composite tensile strength was investigated. The experimental design setting was based on 2 level factorial experiments. Two parameters were selected during alkali treatment process which are kenaf fiber immersion duration (at 30 minute and 480 minute) and alkali solution temperature (at 40°C and 80°C). Alkali concentration was fixed at 2% (w/v) and the kenaf polyester volume fraction ratio was 10:90. The composite specimens were tested to determine the tensile properties according to ASTM D638-10 Type I. JOEL scanning electron microscopy (SEM) was used to study the microstructure of the material. The result showed that alkali treatment conditions setting do have the impact on tensile strength of short randomly oriented kenaf polyester composite. The interaction factors between immersion time and temperature was found to have prominent factors to the tensile strength of composite followed by the immersion time factor.


2014 ◽  
Vol 893 ◽  
pp. 504-507 ◽  
Author(s):  
Pringgo Widyo Laksono ◽  
Taufiq Rochman ◽  
Hari Setyanto ◽  
Eko Pujiyanto ◽  
Kuncoro Diharjo

The use of sugarcane bagasse for providing avaibility of raw material have been attracting attention. The benefits using natural fiber such as sugarcane bagasse are eco-friendly, low cost considerations because widespread avaibility, high stiffness, better thermal stability, and biodegradability. Sugarcane bagasse and (Polyvinyl acetate, PVAc) have been shown to possess the ability of being applied as raw material for manufacturing of bio composite panel at 10mm thickness (fixed variable) by three mesh sizes (20,30 dan 40) with ratio of the composition 95:5, 90:10 and 85:15%. The specimen have been emphasized at 3:2 and 2:1. This research was conducted to investigate possibility of manufacturing bio composite panel that its characteristic resistance to the thermal conductivity. This bio composite speciments were tested for thermal conductivity test according to ASTM E-1225. The results revealed that optimum design for bio composite panel obtained that emphasis at 3:2, filtered by mesh size 20, ratio composition sugarcane bagasse 85% and PVAc 15%. The test result shown that panel has thermal conductivity resistance value (R) 17,089 °C/W. Thus, it can be concluded that bio composite panel can be manufactured successfully from sugarcane bagasse and PVAc as the matrix mixture.


1970 ◽  
Vol 45 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Husna P Nur ◽  
M Akram Hossain ◽  
Shahin Sultana ◽  
M Mamun Mollah

Use of natural fiber as reinforcing material is the latest invention of polymer science in order to get higher strength with lower weight composite materials having several applications. In this present investigation banana fiber, a natural fiber, is used as the reinforcing material. Low density polyethylene (LDPE)-banana fiber reinforced composites were prepared using both untreated and bleached (treated) banana fiber and LDPE with 7.5, 15, 22.5 and 30% weight content of fibers by using compression molding technique. Physico-mechanical properties (e.g. tensile strength, flexural strength, elongation at break, Young's modulus) of different types of prepared composites were characterized. From this study it is observed that all these values have augmented up to a definite percentage. The tensile strengths and flexural strengths of the composites increased up to 22.5% fiber addition then started to decrease gradually. Young moduli of the composites increased with the increase of fiber addition. Water absorption also increased with the weight of the fiber. Whereas elongation at break decreased with increasing fiber loading. Mechanical properties of bleached banana fiber-LDPE composites were slightly higher than the untreated banana fiber-LDPE composites. Compared to virgin molded LDPE both tensile and flexural strengths and Young moduli of these LDPE-banana fiber composites were significantly higher. All the variable properties like tensile strength, flexural strength, and water absorption capacity showed a very significant role in these polymer composites. Keywords: Banana fiber; LDPE; Composite; Tensile strength; Flexural strength DOI: 10.3329/bjsir.v45i2.5708Bangladesh J. Sci. Ind. Res. 45(2), 117-122, 2010


2014 ◽  
Vol 11 (2) ◽  
pp. 19 ◽  
Author(s):  
Yoon Yee Then ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Hidayah Ariffin ◽  
Wan Md Zin Wan Yunus

Natural fiber is incompatible with hydrophobic polymer due to its hydrophilic nature. Therefore, surface modification of fiber is needed to impart compatibility. In this work,superheated steam (SHS)-alkali was introduced as novel surface treatment method to modify oil palm mesocarp fiber (OPMF) for fabrication of biocomposites. The OPMF was first pre-treated with SHS and subsequently treated with varying NaOH concentration (1, 2, 3, 4 and 5%) and soaking time (1, 2, 3 and 4h) at room temperature. The biocomposites were then fabricated by melt blending of 70 wt% SHS-alkali treated-OPMFs and 30 wt% poly(butylene succinate) in a Brabender internal mixer followed by hot-pressed moulding. The combination treatment resulted in fiber with rough surface as well as led to the exposure ofmicrofibers. The tensile test result showed that fiber treated at 2% NaOH solution and 3h soaking time produced biocomposite with highest improvement in tensile strength (69%) and elongation at break (36%) in comparison to that of untreated OPMF. The scanning electron micrographs of tensile fracture surfaces of biocomposite provide evident for improved adhesion between fiber and polymer after thetreatments.This work demonstrated that combination treatments of SHS and NaOH could be a promising way to modify OPMF for fabrication of biocomposite.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1736 ◽  
Author(s):  
Tarrés ◽  
Oliver-Ortega ◽  
Espinach ◽  
Mutjé ◽  
Delgado-Aguilar ◽  
...  

This paper is focused on the flexural properties of bleached kraft softwood fibers, bio-based, biodegradable, and a globally available reinforcement commonly used in papermaking, of reinforced polylactic acid (PLA) composites. The matrix, polylactic acid, is also a bio-based and biodegradable polymer. Flexural properties of composites incorporating percentages of reinforcement ranging from 15 to 30 wt % were measured and discussed. Another objective was to evaluate the strength of the interface between the matrix and the reinforcements, using the rule of mixtures to determine the coupling factor. Nonetheless, this rule of mixtures presents two unknowns, the coupling factor and the intrinsic flexural strength of the reinforcement. Hence, applying a ratio between the tensile and flexural intrinsic strengths and a defined fiber tensile and flexural strength factors, derived from the rule of mixtures is proposed. The literature lacks a precise evaluation of the intrinsic tensile strength of the reinforcements. In order to obtain such intrinsic tensile strength, we used the Kelly and Tyson modified equation as well as the solution provided by Bowyer and Bader. Finally, we were able to characterize the intrinsic flexural strengths of the fibers when used as reinforcement of polylactic acid.


2015 ◽  
Vol 650 ◽  
pp. 131-138 ◽  
Author(s):  
Himadri Das ◽  
Pallav Saikia ◽  
Dipul Kalita

Utilization of natural fiber as reinforcing material is the latest trend in polymer science to produce higher strength with lower weight composite materials having wide range of applications. As a natural fiber, banana fiber is getting importance in recent years in the reinforcement arena of polymer composite. Two species of banana vizMusa sapientumandMusa paradisicaavailable in North East India were selected considering their higher fiber yield and adequate strength properties of the fibers. The chemical compositions, spectroscopic and thermal properties of these fibers were studied in order to study their suitability for commercial exploration. Low density polyethylene (LDPE)-banana fiber reinforced composites were prepared using hydraulic hot press. Physico-mechanical properties (e.g. tensile strength, flexural strength, elongation at break, Young's modulus) of the prepared composites were determined. The tensile strengths and flexural strengths of the composites increased while using LDPE 10 to 30 % of the fiber and then started to decrease gradually. Young moduli of the composites increased with the increase of fiber mass. Water absorption also increased accordingly with the increase of the fiber weight. The elongation at break decreased with increasing fiber quantity. The mechanical strength properties of chemically treated banana fiber-LDPE composites were slightly higher than the mechanically extracted fiber-LDPE composites. Structural analyses of the treated fibers were carried out by FTIR and XRD. These studied revealed due to the removal of noncellulosic constituents such as hemicelluloses and lignin the crystalline properties of the fibers were increased. All the properties of composite like tensile strength, flexural strength, water absorption capacity etc. plays a significant role in these polymer composite materials. Hence it can be concluded that banana fiber can be used as reinforced agent successfully in the composite industry as a sustainable building material.


Sign in / Sign up

Export Citation Format

Share Document