Copper Smelting Fine Dust Autoclave Leaching

2019 ◽  
Vol 946 ◽  
pp. 615-620 ◽  
Author(s):  
Anton Kovyazin ◽  
Konstantin L. Timofeev ◽  
Sergey Krauhin

At present, arsenic content in copper concentrates is increasing, which leads to an increase in its content in all smelting products, the largest amount of arsenic is transferred in fine dust (dust composition,%: 10-12 Zn, 11-13 Pb, 8-15 Cu , 12-14 Fe, 5-10 As). Autoclaved leaching of dusts (temperature 160-200 °C, oxygen pressure 0.4-0.8 MPa, molar ratio H2SO4 /(Cu + Zn) = 0.75-2.25) to obtain a copper-zinc solution and a cake containing arsenic, iron and lead was studied. Copper extraction in the solution reaches 92%, zinc 95%. Lead, arsenic and iron are concentrated in the cake. Lead from cake is extracted by leaching in sodium chloride solution (temperature 60-70 ° C, NaCl concentration 300 g / dm3). The extraction of lead into the solution is 95%, subsequently lead is precipitated as lead carbonate.

Metallurgist ◽  
2019 ◽  
Vol 62 (11-12) ◽  
pp. 1244-1249 ◽  
Author(s):  
K. A. Karimov ◽  
S. S. Naboichenko ◽  
A. V. Kritskii ◽  
M. A. Tret’yak ◽  
A. A. Kovyazin

2012 ◽  
Vol 490-495 ◽  
pp. 3382-3386
Author(s):  
Xiao Qi Li ◽  
Nai Yan Zhang ◽  
Jun Hai Zhang

Poly(N,N-diethylacrylamide) (PDEA) hydrogel is known for their intelligent reversible swelling/deswelling behavior in response to temperature changes across a lower critical solution temperature (LCST) at around 31oC. In this study, itaconic acid (IA) was co-polymerized with N, N-diethylacrylamide (DEA) monomer to improve the swelling behavior and the total absorbing water. These copolymer hydrogels were prepared by changing the initial DEA/IA molar ratio and total monomer concentration. The chemical structure of hydrogels was characterized by fourier transform infrared (FTIR) spectroscopy. In comparison with the PDEA hydrogel, the equilibrium swelling ratio (ESR) of the hydrogels increase with the increase of IA content in the feed and the swelling dynamics behaviors of the different composition ratios of the P(DEA-co-IA) hydrogels on the different temperatures was investigated in detail.


2019 ◽  
Vol 280 ◽  
pp. 03010 ◽  
Author(s):  
Dwi Rasy Mujiyanti ◽  
Muthia Elma ◽  
Mufidah Amalia

Interlayer-free glucose carbonized template silica membranesbased on tetraethyl orthosilicate (TEOS) and glucose were successfullyprepared using an acid-base catalysed sol-gel method for artificial brinewater desalination (7.5% wt NaCl solution %) at temperatures range from25, 40 and 60 °C. These membranes calcined at 250 and 400 °C. Themembranes were fabricated through sol-gel process by using TEOS(tetraethyl orthosilicate); ethanol; nitric acid; ammonia; aquadest andglucose as a template. By molar ratio is 1: 38: 0.0007: 0.0003: 5 and0.25%; 0.5%, 1% w/v glucose as template. The results show the highestwater fluxes of 1.8, 2.2 and 4.8 kg m−2 h−1 for 25, 40 and 60 °Cdesalination process with excellent salt rejections of 99.5, 99.5 and 99.7%, respectively. It was found that the higher the NaCl solution temperature asfeed solution as well as glucose concentration (0.25% to 1% wt) astemplate attached in the silica matrixes, the higher water fluxes eventhough the salt rejection remain the same. This study demonstrates that theorganosilica membranes offered the carbonized silica mesostructuremembranes with excellent separation of water from the hydrated salt ions, particularly for processing brine salt solutions.


e-Polymers ◽  
2017 ◽  
Vol 17 (5) ◽  
pp. 399-408 ◽  
Author(s):  
Pedro Hernández ◽  
Armando Lucero-Acuña ◽  
Cindy Alejandra Gutiérrez-Valenzuela ◽  
Ramón Moreno ◽  
Reynaldo Esquivel

AbstractThe interesting properties of stimuli-responsive polymers lead to a wide range of possibilities in design and engineering of functional material for the biomedical application. A systematic approach focused on the evaluation of the physical properties of multiresponse (pH and temperature) PNIPAM was reported in this work. The effect of three different molar ratios of poly(n-isopropylacrylamide): chitosan (1:49, 1:99 and 1:198) were evaluated and labeled correspondingly as PC1F, PC2F, and PC3F. An increase in the lower critical solution temperature (LCST) of sample PC1F (34°C) was observed by differential scanning calorimetry (DSC). The presence of low molecular weight chitosan (LMWC) full-interpenetrating polymer (Full-IPN) segments in poly(n-isopropylacrylamide) was confirmed by Fourier-transform infrared spectroscopy (FT-IR). The hydrogel’s water capture was analyzed by two models of swelling, the power law model and a model that considers the relaxation of polymeric chains of the hydrogel, finding good correlations with experimental data in both cases. Sample PC3F resulted with higher swellability, increasing the weight of the hydrogel around seven times. Hydrogel pH-sensibility was confirmed placing the samples at different pH environments, with an apparent increase in swellability for acidic conditions, confirming the highest swellability for sample PC3F, due to hydrogen bonds boosted by chitosan high molar ratio. Based on these results, the hydrogel obtained has potential as a thermo-pH triggered hydrogel in drug delivery applications.


2013 ◽  
Vol 67 (6) ◽  
pp. 1181-1187 ◽  
Author(s):  
A. Graillot ◽  
S. Djenadi ◽  
C. Faur ◽  
D. Bouyer ◽  
S. Monge ◽  
...  

In this work, new thermosensitive copolymers bearing phosphonated groups were synthesized and used to remove metal pollution. Sorption properties are brought by hydrolyzed (dimethoxyphosphoryl)methyl 2-methylacrylate (hMAPC1) monomer. N-n-propylacrylamide (NnPAAm) led to the thermoresponsive properties of the copolymers. Low lower critical solution temperature (LCST) values were observed, ranging between 20 and 25 °C depending on the molar ratio of each monomer in the copolymer. Sorption properties of these copolymers towards nickel ions were evaluated for increasing temperatures (10–40 °C), Ni ion concentrations of 20 mg L−1 and pH values between 3 and 7. Best results were observed for temperatures just lower than the LCST (20 °C), when the copolymer was fully soluble in water solution. For temperature higher than the LCST, phosphonic diacid groups accessibility was considerably reduced by the precipitation of the thermosensitive part of the copolymer leading to lower sorption properties. In these conditions, the highest Ni removal by the copolymer was observed for pH = 7, when there was almost no competition between the sorption of H+ and Ni2+ ions on the phosphonic acid groups. These optimal conditions enabled removal of about 70% of the nickel in the synthetic effluent.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6192
Author(s):  
Qing Zhang ◽  
Guijian Liu ◽  
Shuchuan Peng ◽  
Chuncai Zhou

Both the accumulation of coal gangue and potentially toxic elements in aqueous solution have caused biological damage to the surrounding ecosystem of the Huainan coal mining field. In this study, coal gangue was used to synthesize calcium silicate hydrate (C-S-H) to remove Cr(VI) and Cu(II)from aqueous solutions and aqueous solution. The optimum parameters for C-S-H synthesis were 700 °C for 1 h and a Ca/Si molar ratio of 1.0. Quantitative sorption analysis was done at variable temperature, C-S-H dosages, solution pH, initial concentrations of metals, and reaction time. The solution pH was precisely controlled by a pH meter. The adsorption temperature was controlled by a thermostatic gas bath oscillator. The error of solution temperature was controlled at ± 0.3, compared with the adsorption temperature. For Cr(VI) and Cu(II), the optimum initial concentration, temperature, and reaction time were 200 mg/L, 40 °C and 90 min, pH 2 and 0.1 g C-S-H for Cr(VI), pH 6 and 0.07 g C-S-H for Cu(II), respectively. The maximum adsorption capacities of Cr(VI) and Cu(II) were 68.03 and 70.42 mg·g−1, respectively. Furthermore, the concentrations of Cu(II) and Cr(VI) in aqueous solution could meet the surface water quality standards in China. The adsorption mechanism of Cu(II) and Cr(VI) onto C-S-H were reduction, electrostatic interaction, chelation interaction, and surface complexation. It was found that C-S-H is an environmentally friendly adsorbent for effective removal of metals from aqueous solution through different mechanisms.


2016 ◽  
Vol 64 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Diego Corrales ◽  
Alicia Acuña ◽  
María Salhi ◽  
Gustavo Saona ◽  
Ernesto Brugnoli

Abstract Metals (Cu, Zn, Hg) and metalloid (As) concentrations were measured in Micropogonias furnieri and Mugil platanus caught in three areas along the Montevideo coastal zone during winter 2010, spring 2010 and 2011. Compared to previous studies conducted in the zone, both species showed higher (for Cu), similar (for Zn) or lower (for Hg) concentrations. The highest Hg values were found in the M. furnieri of Montevideo bay. There was no spatial variation in Cu, Zn, and As concentrations in muscle, likely due to the high mobility of both species. However, the Cu content in the liver of M. furnieri was higher in fish from the West zone. Cu, Zn and As found in the liver of M. platanus were much higher than in that of M. furnieri. A functional relationship between muscle levels of Zn and Hg and fish length of M. furnieri indicates bioaccumulation of these metals. According to the results, M. furnieri may be used as a temporal bioindicator for Hg, but not as a spatial bioindicator. Mercury levels were below the maximum safety level based on international standard values for human consumption.


2014 ◽  
Vol 881-883 ◽  
pp. 564-569
Author(s):  
Da Chao Zhang ◽  
Xiao Lai Liu ◽  
Da Ming Guan ◽  
Xiao Yi Xu ◽  
Su Ying Wu

Copper smelting gas producing sulfuric acid process produces contaminated acid which contains high concentration of fluorine, chlorine, arsenic and copper, zinc, lead, cadmium and other metals. The sulfide precipitation and lime neutralization methods have been used at present. Those methods have some deficiencies as which produces a lot of hazardous and unwieldy solid wastes, spends huge processing cost, reuse difficultly the water after treatment. In this paper, according to characteristics of this kind of smelting contaminated acid, evaporation condensing process and the feasibility of recycling arsenic, sulfuric acid and valuable metals were studied. Under the condition of atmospheric heating evaporation, this study explored the distribution characteristics of fluorine, chlorine, sulfate radical, arsenic in condensate and in concentrate and the crystallization removal rates of arsenic trioxide in concentrate at different temperatures and different enrichment ratios. The results show arsenic, fluorine and chloride have good removal rates from contaminated acid by evaporation condensing process. Temperature at 130°C, enrichment multiple in 6~7, the removal rate of arsenic, fluorine and chlorine reached 62%, 88%, 77%. The results also show evaporation condensing process has good application prospects to treat smelting contaminated acid.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 523
Author(s):  
Yang Wang ◽  
Zhihao Rong ◽  
Xincun Tang ◽  
Shan Cao

In recent years, arsenic pollution has seriously harmed human health. Arsenic-containing waste should be treated to render it harmless and immobilized to form a stable, solid material. Scorodite (iron arsenate) is recognized as the best solid arsenic material in the world. It has the advantages of high arsenic content, good stability, and a low iron/arsenic molar ratio. However, scorodite can decompose and release arsenic in a neutral and alkaline environment. Ferroferric oxide (Fe3O4) is a common iron oxide that is insoluble in acid and alkali solutions. Coating a Fe3O4 shell that is acid- and alkali-resistant on the surface of scorodite crystals will improve the stability of the material. In this study, a scorodite@Fe3O4 core–shell structure material was synthesized. The synthesized core–shell material was detected by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Raman, and energy-dispersive X-ray spectroscopy (EDS) techniques, and the composition and structure were confirmed. The synthesis condition and forming process were analyzed. Long-term leaching tests were conducted to evaluate the stability of the synthesized scorodite@Fe3O4. The results indicate that the scorodite@Fe3O4 had excellent stability after 20 days of exposure to neutral and weakly alkaline solutions. The inert Fe3O4 shell could prevent the scorodite core from corrosion by the external solution. The scorodite@Fe3O4 core–shell structure material was suitable for the immobilization of arsenic and has potential application prospects for the treatment of arsenic-containing waste.


2010 ◽  
Vol 8 (2) ◽  
pp. 426-433 ◽  
Author(s):  
Yueqin Yu ◽  
Yanshun Li ◽  
Chunjing Zhu ◽  
Lingxiu Liu

AbstractBased on a biodegradable cross-linker, N-maleyl chitosan (N-MACH), a series of Poly(N-isopropylacrylamide) (PNIPAAm) and Poly(N-isopropylacrylamide-co-acrylamide) [P(NIPAAm-co-Am)] hydrogels were prepared, and their lower critical solution temperature (LCST), swelling kinetics, equilibrium swelling ratio in NaCl solution, and enzymatic degradation behavior in simulated gastric fluids (SGF) were discussed. The LCST did not change with different cross-linker contents. By altering the NIPAAm/Am molar ratio of P(NIPAAm-co-Am) hydrogels, the LCST could be increased to 39°C. The LCST of the hydrogel was significantly influenced by the monomer ratio of the NIPAAm/Am but not by the cross-linker content. In the swelling kinetics, all the dry hydrogels exhibited fast swelling behavior, and the swelling ratios were influenced by the cross-linker content and NIPAAm/Am molar ratios. Equilibrium swelling ratio of all the hydrogels decreased with increasing NaCl solution concentration. In enzymatic degradation tests, the weight loss of hydrogels was dependent on the cross-linker contents and the enzyme concentration.


Sign in / Sign up

Export Citation Format

Share Document